Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edge effects

. 2017 Dec 19 ; 8 (1) : 1966. [epub] 20171219

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29259276
Odkazy

PubMed 29259276
PubMed Central PMC5736600
DOI 10.1038/s41467-017-01997-0
PII: 10.1038/s41467-017-01997-0
Knihovny.cz E-zdroje

Less than half of anthropogenic carbon dioxide emissions remain in the atmosphere. While carbon balance models imply large carbon uptake in tropical forests, direct on-the-ground observations are still lacking in Southeast Asia. Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 per year (95% CI 0.14-0.72, mean period 1988-2010) above-ground live biomass. These results closely match those from African and Amazonian plot networks, suggesting that the world's remaining intact tropical forests are now en masse out-of-equilibrium. Although both pan-tropical and long-term, the sink in remaining intact forests appears vulnerable to climate and land use changes. Across Borneo the 1997-1998 El Niño drought temporarily halted the carbon sink by increasing tree mortality, while fragmentation persistently offset the sink and turned many edge-affected forests into a carbon source to the atmosphere.

Agriculture Faculty of Tadulako University Jln Soekarno Hatta km 09 Tondo 94118 Indonesia

Asian School of the Environment Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore

Balitek KSDA Research Development and Innovation Agency Ministry of Environment and Forestry Jl Soekarno Hatta KM 38 RT 09 Samboja Indonesia

Bioclimate Thorn House 5 Rose Street Edinburgh EH2 2PR UK

Biology Department Boston University 5 Cummington Mall Boston MA 02215 USA

Carboforexpert Hermance 1248 Switzerland

Center for International Forestry Research Jl CIFOR Situ Gede Bogor 16115 Indonesia

Center for Tropical Forest Science Forest Global Earth Observatory Smithsonian Tropical Research Institute Washington DC 20013 USA

Centre for Ecology and Hydrology Penicuik EH26 0QB UK

CTFS ForestGEO Program Lambir Miri 98000 Sarawak Malaysia

Deltares Boussinesqweg 1 2629 HV Delft The Netherlands

Department of Animal Science and Food Processing Faculty of Tropical Agrisciences Czech University of Life Sciences Kamýcká 129 165 00 Praha 6 Suchdol Prague Czech Republic

Department of Botany Faculty of Science Palacký University in Olomouc Šlechtitelů 27 CZ 78371 Olomouc Czech Republic

Department of Ecology and Environmental Sciences Faculty of Science Palacký University in Olomouc Šlechtitelů 27 CZ 78371 Olomouc Czech Republic

Department of Forest Botany Dendrology and Geobiocoenology Faculty of Forestry and Wood Technology Mendel University in Brno Zemedelska 3 613 00 Brno Czech Republic

Department of Geography University College London London WC1E 6BT UK

Department of Life Sciences Imperial College London Silwood Park Campus Ascot SL5 7PY UK

Department of Organismic and Evolutionary Biology Harvard University 22 Divinity Avenue Cambridge MA 02138 USA

Department of Vegetation Ecology Institute of Botany The Czech Academy of Sciences Lidicka 25 27 CZ 60200 Brno Czech Republic

Environmental and Life Sciences Programme Faculty of Science Universiti Brunei Darussalam Jalan Tungku Link Gadong BE1410 Brunei Darussalam

Environmental Change Institute School of Geography and the Environment University of Oxford Oxford OX1 3QY UK

Faculty of Forestry Mulawarman University Jl Pasir Balengkong 75123 Samarinda Indonesia

Forest Research and Development Center Research Development and Innovation Agency Ministry of Environment and Forestry Jl Gunung Batu No 5 Bogor 16610 Indonesia

Forests and Societies Research Unit CIRAD Univ Montpellier Campus International de Baillarguet TA C 105 D 34398 Montpellier Cedex 5 France

Graduate School of Agriculture Kyoto University Kyoto 606 8502 Japan

Graduate School of Science and Engineering Kagoshima University 890 0065 Kagoshima Japan

Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam 1012 WX Amsterdam The Netherlands

Instituto de Investigaciones Agrobiológicas de Galicia Santiago de Compostela 15705 Spain

International Tropical Forestry Faculty of Science and Natural Resources Universiti Malaysia Sabah Jl UMS 88400 Kota Kinabalu Malaysia

Laboratory for wood Biology and Xylarium Royal Museum for Central Africa Leuvensesteenweg 13 3080 Tervuren Belgium

Pan Eco SOCP Jl Wahid Hasyim No 51 74 Medan 20154 Indonesia

Pro Natura Foundation Jl Jend Sudirman No 37 Balikpapan 76112 Indonesia

Research Center for Biology Indonesian Institute of Sciences Jl Raya Jakarta Bogor KM 46 Cibinong 16911 Indonesia

Royal Botanic Garden Edinburgh Edinburgh EH3 5LR UK

Sabah Forestry Department Forest Research Centre Mile 14 Jl Sepilok 90000 Sandakan Malaysia

School of Biological Sciences University of Aberdeen Cruickshank Building St Machar Drive Aberdeen AB24 3UU UK

School of Biology University of Leeds Leeds LS2 9JT UK

School of Environmental and Marine Science James Cook University 1 James Cook Dr Townsville City QLD 4811 Australia

School of Geography University of Leeds Leeds LS2 9JT UK

School of Science and the Environment Manchester Metropolitan University Chester Street Manchester M1 5GD UK

Smithsonian Tropical Research Institute Balboa Ancon 03092 Panama

Sungai Wain Protected Forest Management Unit KM 23 Kel Karang Joang Balikpapan 76101 Indonesia

Tropical Peat Research Institute Biological Research Division Malaysian Palm Oil Board Bandar Baru Bangi 43000 Kajang Malaysia

Universidade Estadual de Campinas Campinas 13083 970 Brazil

Ústí nad Labem Zoo Drážďanská 23 400 07 Ústí nad Labem Czech Republic

Utrecht University Domplein 29 3512 JE Utrecht The Netherlands

Erratum v

PubMed

Zobrazit více v PubMed

Ciais, P. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Thomas F. Stocker et al) 465–570 (Cambridge University Press, 2013).

Zhu Z, et al. Greening of the Earth and its drivers. Nat. Clim. Change. 2016;6:791–795. doi: 10.1038/nclimate3004. DOI

Sitch S, et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences. 2015;12:653–679. doi: 10.5194/bg-12-653-2015. DOI

Gatti LV, et al. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature. 2014;506:76–80. doi: 10.1038/nature12957. PubMed DOI

Stephens BB, et al. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science. 2007;316:1732–1735. doi: 10.1126/science.1137004. PubMed DOI

Lewis SL, Lloyd J, Sitch S, Mitchard ETA, Laurance WF. Changing ecology of tropical forests: Evidence and drivers. Annu. Rev. Ecol. Evol. Syst. 2009;40:529–549. doi: 10.1146/annurev.ecolsys.39.110707.173345. DOI

de Almeida Castanho AD, et al. Changing Amazon biomass and the role of atmospheric CO2 concentration, climate, and land use. Global. Biogeochem. Cycles. 2016;30:18–39. doi: 10.1002/2015GB005135. DOI

Schimel D, Stephens BB, Fisher JB. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA. 2015;112:436–441. doi: 10.1073/pnas.1407302112. PubMed DOI PMC

Baker TR, et al. Increasing biomass in Amazonian forest plots. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004;359:353–365. doi: 10.1098/rstb.2003.1422. PubMed DOI PMC

Lewis SL, et al. Increasing carbon storage in intact African tropical forests. Nature. 2009;457:1003–1006. doi: 10.1038/nature07771. PubMed DOI

Phillips OL, et al. Drought sensitivity of the Amazon rainforest. Science. 2009;323:1344–1347. doi: 10.1126/science.1164033. PubMed DOI

Phillips OL, Brienen RJW. Carbon uptake by mature Amazon forests has mitigated Amazon nations’ carbon emissions. Carbon Balance Manag. 2017;12:1. doi: 10.1186/s13021-016-0069-2. PubMed DOI PMC

Chave J, et al. Assessing evidence for a pervasive alteration in tropical tree communities. PLoS Biol. 2008;6:e45. doi: 10.1371/journal.pbio.0060045. PubMed DOI PMC

Pan Y, et al. A large and persistent carbon sink in the world’s forests. Science. 2011;333:988–993. doi: 10.1126/science.1201609. PubMed DOI

Slik JWF, et al. An estimate of the number of tropical tree species. Proc. Natl Acad. Sci. USA. 2015;112:7472–7477. doi: 10.1073/pnas.1423147112. PubMed DOI PMC

Corlett RT, Primack RB. Tropical rainforests and the need for cross-continental comparisons. Trends Ecol. Evol. 2006;21:104–110. doi: 10.1016/j.tree.2005.12.002. PubMed DOI

Banin L, et al. What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Glob. Ecol. Biogeogr. 2012;21:1179–1190. doi: 10.1111/j.1466-8238.2012.00778.x. DOI

Avitabile V, et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 2015;22:1406–1420. doi: 10.1111/gcb.13139. PubMed DOI

Sullivan MJP, et al. Diversity and carbon storage across the tropical forest biome. Sci. Rep. 2017;7:39102. doi: 10.1038/srep39102. PubMed DOI PMC

Banin L, et al. Tropical forest wood production: a cross-continental comparison. J. Ecol. 2014;102:1025–1037. doi: 10.1111/1365-2745.12263. DOI

Phillips OL, et al. Changes in the carbon balance of tropical forests: Evidence from Long-Term plots. Science. 1998;282:439–442. doi: 10.1126/science.282.5388.439. PubMed DOI

Malhi Y. The carbon balance of tropical forest regions, 1990–2005. Curr. Opin. Environ. Sustain. 2010;2:237–244. doi: 10.1016/j.cosust.2010.08.002. DOI

Phillips, O. L. & Lewis, S. L. in Forests and GlobalChange (eds David A. Coomes, David F. R. P. Burslem, & William D. Simonson) 77–108 (Cambridge University Press, 2014).

Kato T, Tang Y. Spatial variability and major controlling factors of CO2 sink strength in Asian terrestrial ecosystems: evidence from eddy covariance data. Glob. Change Biol. 2008;14:2333–2348. doi: 10.1111/j.1365-2486.2008.01646.x. DOI

Niwa Y, et al. Imposing strong constraints on tropical terrestrial CO2 fluxes using passenger aircraft based measurements. J. Geophys. Res. Atmos. 2012;117:D11303. doi: 10.1029/2012JD017474. DOI

Matthew C, et al. The terrestrial carbon budget of South and Southeast Asia. Environ. Res. Lett. 2016;11:105006. doi: 10.1088/1748-9326/11/10/105006. DOI

Thompson RL, et al. Top-down assessment of the Asian carbon budget since the mid 1990s. Nat. Commun. 2016;7:10724. doi: 10.1038/ncomms10724. PubMed DOI PMC

Wade TG, Riitters KH, Wickham JD, Jones KB. Distribution and causes of global forest fragmentation. Conserv. Ecol. 2003;7:7. doi: 10.5751/ES-00530-070207. DOI

Brinck K, et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 2017;8:14855. doi: 10.1038/ncomms14855. PubMed DOI PMC

Nascimento HEM, Laurance WF. Biomass dynamics in Amazonian forest fragments. Ecol. Appl. 2004;14:127–138. doi: 10.1890/01-6003. DOI

Harper KA, et al. Edge influence on forest structure and composition in fragmented landscapes. Conserv. Biol. 2005;19:768–782. doi: 10.1111/j.1523-1739.2005.00045.x. DOI

Laurance WF, et al. Ecosystem decay of Amazonian forest fragments: a 22-Year investigation. Conserv. Biol. 2002;16:605–618. doi: 10.1046/j.1523-1739.2002.01025.x. DOI

Chaplin-Kramer R, et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 2015;6:10158. doi: 10.1038/ncomms10158. PubMed DOI PMC

Feldpausch TR, et al. Amazon forest response to repeated droughts. Glob. Biogeochem. Cycles. 2016;30:964–982. doi: 10.1002/2015GB005133. DOI

Walsh RPD, Newbery DM. The ecoclimatology of Danum, Sabah, in the context of the world's rainforest regions, with particular reference to dry periods and their impact. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1999;354:1869–1883. doi: 10.1098/rstb.1999.0528. PubMed DOI PMC

Phillips OL, et al. Drought–mortality relationships for tropical forests. New. Phytol. 2010;187:631–646. doi: 10.1111/j.1469-8137.2010.03359.x. PubMed DOI

Woods P. Effects of logging, drought, and fire on structure and composition of tropical forests in Sabah, Malaysia. Biotropica. 1989;21:290–298. doi: 10.2307/2388278. DOI

Aiba SI, Kitayama K. Effects of the 1997-98 El Niño drought on rain forests of Mount Kinabalu, Borneo. J. Trop. Ecol. 2002;18:215–230. doi: 10.1017/S0266467402002146. DOI

Slik JWF. El Niño droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia. 2004;141:114–120. doi: 10.1007/s00442-004-1635-y. PubMed DOI

Chave J, et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 2014;20:3177–3190. doi: 10.1111/gcb.12629. PubMed DOI

Goodman RC, et al. Amazon palm biomass and allometry. Forest Ecol. Manage. 2013;310:994–1004. doi: 10.1016/j.foreco.2013.09.045. DOI

Chave J, et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 2009;12:351–366. doi: 10.1111/j.1461-0248.2009.01285.x. PubMed DOI

Feldpausch TR, et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences. 2012;9:3381–3403. doi: 10.5194/bg-9-3381-2012. DOI

Lewis SL, Malhi Y, Phillips OL. Fingerprinting the impacts of global change on tropical forests. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004;359:437–462. doi: 10.1098/rstb.2003.1432. PubMed DOI PMC

Chambers JQ, Higuchi N, Tribuzy ES, Trumbore SE. Carbon sink for a century. Nature. 2001;410:429–429. doi: 10.1038/35068624. PubMed DOI

Yvon-Durocher G, et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature. 2012;487:472–476. doi: 10.1038/nature11205. PubMed DOI

Feeley KJ, Joseph Wright S, Nur Supardi MN, Kassim AR, Davies SJ. Decelerating growth in tropical forest trees. Ecol. Lett. 2007;10:461–469. doi: 10.1111/j.1461-0248.2007.01033.x. PubMed DOI

Wood TE, Cavaleri MA, Reed SC. Tropical forest carbon balance in a warmer world: a critical review spanning microbial- to ecosystem-scale processes. Biol. Rev. 2012;87:912–927. doi: 10.1111/j.1469-185X.2012.00232.x. PubMed DOI

Norby RJ, Zak DR. Ecological lessons from Free-Air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 2011;42:181–203. doi: 10.1146/annurev-ecolsys-102209-144647. DOI

Reay DS, Dentener F, Smith P, Grace J, Feely RA. Global nitrogen deposition and carbon sinks. Nat. Geosci. 2008;1:430–437. doi: 10.1038/ngeo230. DOI

Lloyd, J., Bird, M. I., Veenendaal, E. M. & Kruijt, B. in Global Biogeochemical Cycles in theClimate System (eds E.-D. Schulze et al.) 95-114 (Academic Press, 2001).

Fujii K. Soil acidification and adaptations of plants and microorganisms in Bornean tropical forests. Ecol. Res. 2014;29:371–381. doi: 10.1007/s11284-014-1144-3. DOI

Chazdon RL. Tropical forest recovery: legacies of human impact and natural disturbances. Perspect. Plant Ecol. Evol. Syst. 2003;6:51–71. doi: 10.1078/1433-8319-00042. DOI

Ashton PS, Hall P. Comparisons of structure among mixed dipterocarp forests of North-Western Borneo. J. Ecol. 1992;80:459–481. doi: 10.2307/2260691. DOI

Kirono DGC, Tapper NJ, McBride JL. Documenting Indonesian rainfall in the 1997/1998 El Niño event. Phys. Geogr. 1999;20:422–435.

Goldammer JG. History of equatorial vegetation fires and fire research in Southeast Asia before the 1997–98 episode: A reconstruction of creeping environmental changes. Mitigation Adapt. Strateg. Glob. Change. 2007;12:13–32. doi: 10.1007/s11027-006-9044-7. DOI

Feeley KJ, Davies SJ, Perez R, Hubbell SP, Foster RB. Directional changes in the species composition of a tropical forest. Ecology. 2011;92:871–882. doi: 10.1890/10-0724.1. PubMed DOI

Feeley KJ, et al. The role of gap phase processes in the biomass dynamics of tropical forests. Proc. R. Soc. B Biol. Sci. 2007;274:2857–2864. doi: 10.1098/rspb.2007.0954. PubMed DOI PMC

Gaveau DLA, et al. Four decades of forest persistence, clearance and logging on Borneo. PLoS ONE. 2014;9:e101654. doi: 10.1371/journal.pone.0101654. PubMed DOI PMC

Margono BA, Potapov PV, Turubanova S, Stolle F, Hansen MC. Primary forest cover loss in Indonesia over 2000–2012. Nat. Clim. Change. 2014;4:730–735. doi: 10.1038/nclimate2277. DOI

Tyukavina A, Hansen MC, Potapov PV, Krylov AM, Goetz SJ. Pan-tropical hinterland forests: mapping minimally disturbed forests. Glob. Ecol. Biogeogr. 2016;25:151–163. doi: 10.1111/geb.12394. DOI

Sist P, Nguyen-Thé N. Logging damage and the subsequent dynamics of a dipterocarp forest in East Kalimantan (1990–1996) Forest Ecol. Manage. 2002;165:85–103. doi: 10.1016/S0378-1127(01)00649-1. DOI

Rutishauser E, et al. Rapid tree carbon stock recovery in managed Amazonian forests. Curr. Biol. 2015;25:R787–R788. doi: 10.1016/j.cub.2015.07.034. PubMed DOI

Gourlet-Fleury, S. et al. Tropical forest recovery from logging: a 24 year silvicultural experiment from Central Africa. Philos. Trans. R. Soc. B368, 20120302 (2013). PubMed PMC

Bicknell JE, Gaveau DLA, Davies ZG, Struebig MJ. Saving logged tropical forests: closing roads will bring immediate benefits. Front. Ecol. Environ. 2015;13:73–74. doi: 10.1890/15.WB.001. DOI

Newbery DM, Lingenfelder M, Poltz KF, Ong RC, Ridsdale CE. Growth responses of understorey trees to drought perturbation in tropical rainforest in Borneo. Forest Ecol. Manage. 2011;262:2095–2107. doi: 10.1016/j.foreco.2011.07.030. DOI

Williamson GB, et al. Amazonian Tree Mortality during the 1997 El Niño Drought. Conserv. Biol. 2000;14:1538–1542. doi: 10.1046/j.1523-1739.2000.99298.x. DOI

Brienen RJW, et al. Long-term decline of the Amazon carbon sink. Nature. 2015;519:344–348. doi: 10.1038/nature14283. PubMed DOI

Dudley N. The use of protected areas as tools to apply REDD carbon offset schemes. In: IUCN Commission on environmental, economic and social policy, 2008, Climate change, energy change and conservation. Policy Matt. 2008;16:99–107.

Benedick S, et al. Impacts of rainforest fragmentation on butterflies in northern Borneo: species richness, turnover and the value of small fragments. J. Appl. Ecol. 2006;43:967–977. doi: 10.1111/j.1365-2664.2006.01209.x. DOI

Lucey JM, et al. Tropical forest fragments contribute to species richness in adjacent oil palm plantations. Biol. Conserv. 2014;169:268–276. doi: 10.1016/j.biocon.2013.11.014. DOI

Lopez-Gonzalez G, Lewis SL, Burkitt M, Phillips OL. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. J. Vegetat. Sci. 2011;22:610–613. doi: 10.1111/j.1654-1103.2011.01312.x. DOI

Talbot J, et al. Methods to estimate aboveground wood productivity from long-term forest inventory plots. Forest Ecol. Manage. 2014;320:30–38. doi: 10.1016/j.foreco.2014.02.021. DOI

Chave J, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia. 2005;145:87–99. doi: 10.1007/s00442-005-0100-x. PubMed DOI

Lewis SL, et al. Tropical forest tree mortality, recruitment and turnover rates: calculation, interpretation and comparison when census intervals vary. J. Ecol. 2004;92:929–944. doi: 10.1111/j.0022-0477.2004.00923.x. DOI

Thomas SC, Martin AR. Carbon content of tree tissues: a synthesis. Forests. 2012;3:332. doi: 10.3390/f3020332. DOI

Sonderegger, D. SiZer: Significant Zero Crossings. R package version 0.1–4. https://cran.r-project.org/web/packages/SiZer/ (2012).

Pinheiro J. B. D., DebRoy S., Sarkar D. and R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-124. https://cran.r-project.org/web/packages/nlme/ (2016).

Pinheiro, J. C. & Bates, D. M. Mixed-effects models in S and S-Plus. (Springer, New York, 2000).

Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013;4:133–142. doi: 10.1111/j.2041-210x.2012.00261.x. DOI

Barton, K. MuMIn: Multi-Model Inference. R package version 1.15.6. https://cran.r-project.org/web/packages/MuMIn/ (2016).

R: A language and environment for statistical computing. R Core Team, R Foundation for Statistical Computing, Vienna, Austria https://www.R-project.org/ (2016).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...