Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edge effects
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29259276
PubMed Central
PMC5736600
DOI
10.1038/s41467-017-01997-0
PII: 10.1038/s41467-017-01997-0
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Less than half of anthropogenic carbon dioxide emissions remain in the atmosphere. While carbon balance models imply large carbon uptake in tropical forests, direct on-the-ground observations are still lacking in Southeast Asia. Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 per year (95% CI 0.14-0.72, mean period 1988-2010) above-ground live biomass. These results closely match those from African and Amazonian plot networks, suggesting that the world's remaining intact tropical forests are now en masse out-of-equilibrium. Although both pan-tropical and long-term, the sink in remaining intact forests appears vulnerable to climate and land use changes. Across Borneo the 1997-1998 El Niño drought temporarily halted the carbon sink by increasing tree mortality, while fragmentation persistently offset the sink and turned many edge-affected forests into a carbon source to the atmosphere.
Agriculture Faculty of Tadulako University Jln Soekarno Hatta km 09 Tondo 94118 Indonesia
Bioclimate Thorn House 5 Rose Street Edinburgh EH2 2PR UK
Biology Department Boston University 5 Cummington Mall Boston MA 02215 USA
Carboforexpert Hermance 1248 Switzerland
Center for International Forestry Research Jl CIFOR Situ Gede Bogor 16115 Indonesia
Centre for Ecology and Hydrology Penicuik EH26 0QB UK
CTFS ForestGEO Program Lambir Miri 98000 Sarawak Malaysia
Deltares Boussinesqweg 1 2629 HV Delft The Netherlands
Department of Geography University College London London WC1E 6BT UK
Department of Life Sciences Imperial College London Silwood Park Campus Ascot SL5 7PY UK
Faculty of Forestry Mulawarman University Jl Pasir Balengkong 75123 Samarinda Indonesia
Graduate School of Agriculture Kyoto University Kyoto 606 8502 Japan
Graduate School of Science and Engineering Kagoshima University 890 0065 Kagoshima Japan
Instituto de Investigaciones Agrobiológicas de Galicia Santiago de Compostela 15705 Spain
Pan Eco SOCP Jl Wahid Hasyim No 51 74 Medan 20154 Indonesia
Pro Natura Foundation Jl Jend Sudirman No 37 Balikpapan 76112 Indonesia
Royal Botanic Garden Edinburgh Edinburgh EH3 5LR UK
Sabah Forestry Department Forest Research Centre Mile 14 Jl Sepilok 90000 Sandakan Malaysia
School of Biology University of Leeds Leeds LS2 9JT UK
School of Geography University of Leeds Leeds LS2 9JT UK
Smithsonian Tropical Research Institute Balboa Ancon 03092 Panama
Sungai Wain Protected Forest Management Unit KM 23 Kel Karang Joang Balikpapan 76101 Indonesia
Universidade Estadual de Campinas Campinas 13083 970 Brazil
Ústí nad Labem Zoo Drážďanská 23 400 07 Ústí nad Labem Czech Republic
Utrecht University Domplein 29 3512 JE Utrecht The Netherlands
Zobrazit více v PubMed
Ciais, P. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Thomas F. Stocker et al) 465–570 (Cambridge University Press, 2013).
Zhu Z, et al. Greening of the Earth and its drivers. Nat. Clim. Change. 2016;6:791–795. doi: 10.1038/nclimate3004. DOI
Sitch S, et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences. 2015;12:653–679. doi: 10.5194/bg-12-653-2015. DOI
Gatti LV, et al. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature. 2014;506:76–80. doi: 10.1038/nature12957. PubMed DOI
Stephens BB, et al. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science. 2007;316:1732–1735. doi: 10.1126/science.1137004. PubMed DOI
Lewis SL, Lloyd J, Sitch S, Mitchard ETA, Laurance WF. Changing ecology of tropical forests: Evidence and drivers. Annu. Rev. Ecol. Evol. Syst. 2009;40:529–549. doi: 10.1146/annurev.ecolsys.39.110707.173345. DOI
de Almeida Castanho AD, et al. Changing Amazon biomass and the role of atmospheric CO2 concentration, climate, and land use. Global. Biogeochem. Cycles. 2016;30:18–39. doi: 10.1002/2015GB005135. DOI
Schimel D, Stephens BB, Fisher JB. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA. 2015;112:436–441. doi: 10.1073/pnas.1407302112. PubMed DOI PMC
Baker TR, et al. Increasing biomass in Amazonian forest plots. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004;359:353–365. doi: 10.1098/rstb.2003.1422. PubMed DOI PMC
Lewis SL, et al. Increasing carbon storage in intact African tropical forests. Nature. 2009;457:1003–1006. doi: 10.1038/nature07771. PubMed DOI
Phillips OL, et al. Drought sensitivity of the Amazon rainforest. Science. 2009;323:1344–1347. doi: 10.1126/science.1164033. PubMed DOI
Phillips OL, Brienen RJW. Carbon uptake by mature Amazon forests has mitigated Amazon nations’ carbon emissions. Carbon Balance Manag. 2017;12:1. doi: 10.1186/s13021-016-0069-2. PubMed DOI PMC
Chave J, et al. Assessing evidence for a pervasive alteration in tropical tree communities. PLoS Biol. 2008;6:e45. doi: 10.1371/journal.pbio.0060045. PubMed DOI PMC
Pan Y, et al. A large and persistent carbon sink in the world’s forests. Science. 2011;333:988–993. doi: 10.1126/science.1201609. PubMed DOI
Slik JWF, et al. An estimate of the number of tropical tree species. Proc. Natl Acad. Sci. USA. 2015;112:7472–7477. doi: 10.1073/pnas.1423147112. PubMed DOI PMC
Corlett RT, Primack RB. Tropical rainforests and the need for cross-continental comparisons. Trends Ecol. Evol. 2006;21:104–110. doi: 10.1016/j.tree.2005.12.002. PubMed DOI
Banin L, et al. What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Glob. Ecol. Biogeogr. 2012;21:1179–1190. doi: 10.1111/j.1466-8238.2012.00778.x. DOI
Avitabile V, et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 2015;22:1406–1420. doi: 10.1111/gcb.13139. PubMed DOI
Sullivan MJP, et al. Diversity and carbon storage across the tropical forest biome. Sci. Rep. 2017;7:39102. doi: 10.1038/srep39102. PubMed DOI PMC
Banin L, et al. Tropical forest wood production: a cross-continental comparison. J. Ecol. 2014;102:1025–1037. doi: 10.1111/1365-2745.12263. DOI
Phillips OL, et al. Changes in the carbon balance of tropical forests: Evidence from Long-Term plots. Science. 1998;282:439–442. doi: 10.1126/science.282.5388.439. PubMed DOI
Malhi Y. The carbon balance of tropical forest regions, 1990–2005. Curr. Opin. Environ. Sustain. 2010;2:237–244. doi: 10.1016/j.cosust.2010.08.002. DOI
Phillips, O. L. & Lewis, S. L. in Forests and GlobalChange (eds David A. Coomes, David F. R. P. Burslem, & William D. Simonson) 77–108 (Cambridge University Press, 2014).
Kato T, Tang Y. Spatial variability and major controlling factors of CO2 sink strength in Asian terrestrial ecosystems: evidence from eddy covariance data. Glob. Change Biol. 2008;14:2333–2348. doi: 10.1111/j.1365-2486.2008.01646.x. DOI
Niwa Y, et al. Imposing strong constraints on tropical terrestrial CO2 fluxes using passenger aircraft based measurements. J. Geophys. Res. Atmos. 2012;117:D11303. doi: 10.1029/2012JD017474. DOI
Matthew C, et al. The terrestrial carbon budget of South and Southeast Asia. Environ. Res. Lett. 2016;11:105006. doi: 10.1088/1748-9326/11/10/105006. DOI
Thompson RL, et al. Top-down assessment of the Asian carbon budget since the mid 1990s. Nat. Commun. 2016;7:10724. doi: 10.1038/ncomms10724. PubMed DOI PMC
Wade TG, Riitters KH, Wickham JD, Jones KB. Distribution and causes of global forest fragmentation. Conserv. Ecol. 2003;7:7. doi: 10.5751/ES-00530-070207. DOI
Brinck K, et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 2017;8:14855. doi: 10.1038/ncomms14855. PubMed DOI PMC
Nascimento HEM, Laurance WF. Biomass dynamics in Amazonian forest fragments. Ecol. Appl. 2004;14:127–138. doi: 10.1890/01-6003. DOI
Harper KA, et al. Edge influence on forest structure and composition in fragmented landscapes. Conserv. Biol. 2005;19:768–782. doi: 10.1111/j.1523-1739.2005.00045.x. DOI
Laurance WF, et al. Ecosystem decay of Amazonian forest fragments: a 22-Year investigation. Conserv. Biol. 2002;16:605–618. doi: 10.1046/j.1523-1739.2002.01025.x. DOI
Chaplin-Kramer R, et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 2015;6:10158. doi: 10.1038/ncomms10158. PubMed DOI PMC
Feldpausch TR, et al. Amazon forest response to repeated droughts. Glob. Biogeochem. Cycles. 2016;30:964–982. doi: 10.1002/2015GB005133. DOI
Walsh RPD, Newbery DM. The ecoclimatology of Danum, Sabah, in the context of the world's rainforest regions, with particular reference to dry periods and their impact. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1999;354:1869–1883. doi: 10.1098/rstb.1999.0528. PubMed DOI PMC
Phillips OL, et al. Drought–mortality relationships for tropical forests. New. Phytol. 2010;187:631–646. doi: 10.1111/j.1469-8137.2010.03359.x. PubMed DOI
Woods P. Effects of logging, drought, and fire on structure and composition of tropical forests in Sabah, Malaysia. Biotropica. 1989;21:290–298. doi: 10.2307/2388278. DOI
Aiba SI, Kitayama K. Effects of the 1997-98 El Niño drought on rain forests of Mount Kinabalu, Borneo. J. Trop. Ecol. 2002;18:215–230. doi: 10.1017/S0266467402002146. DOI
Slik JWF. El Niño droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia. 2004;141:114–120. doi: 10.1007/s00442-004-1635-y. PubMed DOI
Chave J, et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 2014;20:3177–3190. doi: 10.1111/gcb.12629. PubMed DOI
Goodman RC, et al. Amazon palm biomass and allometry. Forest Ecol. Manage. 2013;310:994–1004. doi: 10.1016/j.foreco.2013.09.045. DOI
Chave J, et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 2009;12:351–366. doi: 10.1111/j.1461-0248.2009.01285.x. PubMed DOI
Feldpausch TR, et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences. 2012;9:3381–3403. doi: 10.5194/bg-9-3381-2012. DOI
Lewis SL, Malhi Y, Phillips OL. Fingerprinting the impacts of global change on tropical forests. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004;359:437–462. doi: 10.1098/rstb.2003.1432. PubMed DOI PMC
Chambers JQ, Higuchi N, Tribuzy ES, Trumbore SE. Carbon sink for a century. Nature. 2001;410:429–429. doi: 10.1038/35068624. PubMed DOI
Yvon-Durocher G, et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature. 2012;487:472–476. doi: 10.1038/nature11205. PubMed DOI
Feeley KJ, Joseph Wright S, Nur Supardi MN, Kassim AR, Davies SJ. Decelerating growth in tropical forest trees. Ecol. Lett. 2007;10:461–469. doi: 10.1111/j.1461-0248.2007.01033.x. PubMed DOI
Wood TE, Cavaleri MA, Reed SC. Tropical forest carbon balance in a warmer world: a critical review spanning microbial- to ecosystem-scale processes. Biol. Rev. 2012;87:912–927. doi: 10.1111/j.1469-185X.2012.00232.x. PubMed DOI
Norby RJ, Zak DR. Ecological lessons from Free-Air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 2011;42:181–203. doi: 10.1146/annurev-ecolsys-102209-144647. DOI
Reay DS, Dentener F, Smith P, Grace J, Feely RA. Global nitrogen deposition and carbon sinks. Nat. Geosci. 2008;1:430–437. doi: 10.1038/ngeo230. DOI
Lloyd, J., Bird, M. I., Veenendaal, E. M. & Kruijt, B. in Global Biogeochemical Cycles in theClimate System (eds E.-D. Schulze et al.) 95-114 (Academic Press, 2001).
Fujii K. Soil acidification and adaptations of plants and microorganisms in Bornean tropical forests. Ecol. Res. 2014;29:371–381. doi: 10.1007/s11284-014-1144-3. DOI
Chazdon RL. Tropical forest recovery: legacies of human impact and natural disturbances. Perspect. Plant Ecol. Evol. Syst. 2003;6:51–71. doi: 10.1078/1433-8319-00042. DOI
Ashton PS, Hall P. Comparisons of structure among mixed dipterocarp forests of North-Western Borneo. J. Ecol. 1992;80:459–481. doi: 10.2307/2260691. DOI
Kirono DGC, Tapper NJ, McBride JL. Documenting Indonesian rainfall in the 1997/1998 El Niño event. Phys. Geogr. 1999;20:422–435.
Goldammer JG. History of equatorial vegetation fires and fire research in Southeast Asia before the 1997–98 episode: A reconstruction of creeping environmental changes. Mitigation Adapt. Strateg. Glob. Change. 2007;12:13–32. doi: 10.1007/s11027-006-9044-7. DOI
Feeley KJ, Davies SJ, Perez R, Hubbell SP, Foster RB. Directional changes in the species composition of a tropical forest. Ecology. 2011;92:871–882. doi: 10.1890/10-0724.1. PubMed DOI
Feeley KJ, et al. The role of gap phase processes in the biomass dynamics of tropical forests. Proc. R. Soc. B Biol. Sci. 2007;274:2857–2864. doi: 10.1098/rspb.2007.0954. PubMed DOI PMC
Gaveau DLA, et al. Four decades of forest persistence, clearance and logging on Borneo. PLoS ONE. 2014;9:e101654. doi: 10.1371/journal.pone.0101654. PubMed DOI PMC
Margono BA, Potapov PV, Turubanova S, Stolle F, Hansen MC. Primary forest cover loss in Indonesia over 2000–2012. Nat. Clim. Change. 2014;4:730–735. doi: 10.1038/nclimate2277. DOI
Tyukavina A, Hansen MC, Potapov PV, Krylov AM, Goetz SJ. Pan-tropical hinterland forests: mapping minimally disturbed forests. Glob. Ecol. Biogeogr. 2016;25:151–163. doi: 10.1111/geb.12394. DOI
Sist P, Nguyen-Thé N. Logging damage and the subsequent dynamics of a dipterocarp forest in East Kalimantan (1990–1996) Forest Ecol. Manage. 2002;165:85–103. doi: 10.1016/S0378-1127(01)00649-1. DOI
Rutishauser E, et al. Rapid tree carbon stock recovery in managed Amazonian forests. Curr. Biol. 2015;25:R787–R788. doi: 10.1016/j.cub.2015.07.034. PubMed DOI
Gourlet-Fleury, S. et al. Tropical forest recovery from logging: a 24 year silvicultural experiment from Central Africa. Philos. Trans. R. Soc. B368, 20120302 (2013). PubMed PMC
Bicknell JE, Gaveau DLA, Davies ZG, Struebig MJ. Saving logged tropical forests: closing roads will bring immediate benefits. Front. Ecol. Environ. 2015;13:73–74. doi: 10.1890/15.WB.001. DOI
Newbery DM, Lingenfelder M, Poltz KF, Ong RC, Ridsdale CE. Growth responses of understorey trees to drought perturbation in tropical rainforest in Borneo. Forest Ecol. Manage. 2011;262:2095–2107. doi: 10.1016/j.foreco.2011.07.030. DOI
Williamson GB, et al. Amazonian Tree Mortality during the 1997 El Niño Drought. Conserv. Biol. 2000;14:1538–1542. doi: 10.1046/j.1523-1739.2000.99298.x. DOI
Brienen RJW, et al. Long-term decline of the Amazon carbon sink. Nature. 2015;519:344–348. doi: 10.1038/nature14283. PubMed DOI
Dudley N. The use of protected areas as tools to apply REDD carbon offset schemes. In: IUCN Commission on environmental, economic and social policy, 2008, Climate change, energy change and conservation. Policy Matt. 2008;16:99–107.
Benedick S, et al. Impacts of rainforest fragmentation on butterflies in northern Borneo: species richness, turnover and the value of small fragments. J. Appl. Ecol. 2006;43:967–977. doi: 10.1111/j.1365-2664.2006.01209.x. DOI
Lucey JM, et al. Tropical forest fragments contribute to species richness in adjacent oil palm plantations. Biol. Conserv. 2014;169:268–276. doi: 10.1016/j.biocon.2013.11.014. DOI
Lopez-Gonzalez G, Lewis SL, Burkitt M, Phillips OL. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. J. Vegetat. Sci. 2011;22:610–613. doi: 10.1111/j.1654-1103.2011.01312.x. DOI
Talbot J, et al. Methods to estimate aboveground wood productivity from long-term forest inventory plots. Forest Ecol. Manage. 2014;320:30–38. doi: 10.1016/j.foreco.2014.02.021. DOI
Chave J, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia. 2005;145:87–99. doi: 10.1007/s00442-005-0100-x. PubMed DOI
Lewis SL, et al. Tropical forest tree mortality, recruitment and turnover rates: calculation, interpretation and comparison when census intervals vary. J. Ecol. 2004;92:929–944. doi: 10.1111/j.0022-0477.2004.00923.x. DOI
Thomas SC, Martin AR. Carbon content of tree tissues: a synthesis. Forests. 2012;3:332. doi: 10.3390/f3020332. DOI
Sonderegger, D. SiZer: Significant Zero Crossings. R package version 0.1–4. https://cran.r-project.org/web/packages/SiZer/ (2012).
Pinheiro J. B. D., DebRoy S., Sarkar D. and R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-124. https://cran.r-project.org/web/packages/nlme/ (2016).
Pinheiro, J. C. & Bates, D. M. Mixed-effects models in S and S-Plus. (Springer, New York, 2000).
Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013;4:133–142. doi: 10.1111/j.2041-210x.2012.00261.x. DOI
Barton, K. MuMIn: Multi-Model Inference. R package version 1.15.6. https://cran.r-project.org/web/packages/MuMIn/ (2016).
R: A language and environment for statistical computing. R Core Team, R Foundation for Statistical Computing, Vienna, Austria https://www.R-project.org/ (2016).
Field methods for sampling tree height for tropical forest biomass estimation