The Forest Observation System, building a global reference dataset for remote sensing of forest biomass

. 2019 Oct 10 ; 6 (1) : 198. [epub] 20191010

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu dataset, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31601817

Grantová podpora
4000114425/15/NL/FF/gp European Space Agency (ESA) - International
19-77-30015 Russian Science Foundation (RSF) - International

Odkazy

PubMed 31601817
PubMed Central PMC6787017
DOI 10.1038/s41597-019-0196-1
PII: 10.1038/s41597-019-0196-1
Knihovny.cz E-zdroje

Forest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities.

5 N Sukachev Institute of Forest Siberian Branch of the Russian Academy of Science Academgorodok 50 Krasnoyarsk 660036 Russia

AMAP IRD CNRS CIRAD INRA University Montpellier Montpellier France

Bioversity international P O Box 2008 Messa Yaoundé Cameroun

Center for Agricultural research in Suriname CELOS 1914 Paramaribo Suriname

Center of Forest Ecology and Productivity of the Russian Academy of Sciences Profsoyuznaya 84 32 14 Moscow 117997 Russia

Centre for International Forestry Research CIFOR Jalan CIFOR Situ Gede Bogor 16115 Indonesia

Cibodas Botanic Gardens Indonesian Institute of Sciences Jl Kebun Raya Cibodas Cipanas Cianjur 43253 Indonesia

CIRAD Forêts et Sociétés Campus International de Baillarguet Montpellier F 34398 France

CIRAD UMR EcoFoG Campus Agronomique BP 701 Kourou 97387 France French Guiana

Department Forest Ecology and Management The Swedish University of Agricultural Sciences SLU Umeå SE 901 83 Sweden

Department Foresterie et Environnement Institut National Polytechnique Félix Houphouët Boigny INP HB Yamoussoukro BP 2661 Côte d'Ivoire

Department of Ecology and Evolutionary Biology University of California 621 Charles E Young Dr South Los Angeles CA 90095 1606 USA

Department of Environment and Geography University of York Heslington York YO10 5NG UK

Department of Forest Sciences Luiz de Queiroz College of Agriculture University of Sao Paolo PO Box 9 Av Pádua Dias 11 Piracicaba São Paulo 13418 900 Brazil

Department of Geographical Sciences University of Maryland 2181 Lefrak Hall College Park MD 20742 USA

Department of Geography and Earth Sciences Aberystwyth University Aberystwyth SY23 3DB UK

Department of Microbiology and Ecosystem Science Division of Terrestrial Ecosystem research University of Vienna Althanstrasse 14 Vienna A 1090 Austria

Ecosystems Services and Management Program International Institute for Applied Systems Analysis Laxenburg A 2361 Austria

Embrapa Amazonia Oriental Travessa Doutor Enéas Pinheiro Belém PA 66095 903 Brazil

Embrapa BR 364 Caixa postal 321 Rio Branco CEP 69 900 970 Brazil

Embrapa Rodovia AM 10 km 29 Manaus AM 69010 970 Brazil

Embrapa Rodovia Juscelino Kubitscheck Km 5 no 2 600 Macapa Caixa Postal 10 CEP 68903 419 Brazil

European Space Agency ESTEC Noordwijk The Netherlands

FOERDIA Forestry and Environment Research Development and Innovation Agency Jalan Gunung Batu No 5 Bogor 16610 Indonesia

Forest Global Earth Observatory Smithsonian Tropical Research Institute P O Box 37012 Washington 20013 USA

Forest Management in Bolivia Sacta Bolivia

Forest Research Institute Department of Geomatics Braci Leśnej 3 Sękocin Stary Raszyn 05 090 Poland

Forestry faculty Bauman Moscow State Technical University Mytischi 141005 Russia

Forestry Research Institute of Ghana UP Box 63 KNUST Kumasi Ghana

Forêts et Sociétés Univ Montpellier CIRAD Montpellier F 34398 France

FRIM Forest Research Institute of Malaysia 52109 Kepong Selangor Kuala Lumpur Malaysia

FRIM Forest Reserach Institute of Malaysia 52109 Kepong Selangor Kuala Lumpur Malaysia

Geography College of Life and Environmental Sciences University of Exeter Laver Building North Park Road Exeter EX4 4QE UK

Global Change Research Institute CAS Bělidla 986 4a Brno 603 00 Czech Republic

Guyana Forestry Commission 1 Water Street Kingston Georgetown Guyana

Herbier National du Gabon B P 1165 Libreville Gabon

Hiroshima University 1 7 1 Kagamiyama Higashi Hiroshima Hiroshima 739 8521 Japan

IBIF Instituto Boliviano de Investigacion Forestal Av 6 de agosto 28 Km 14 doble via La Guardia Santa Cruz Casilla 6204 Bolivia

IIC The Iwokrama International Centre for Rain Forest Conservation and Development 77 High Street Georgetown Guyana

Institut Centrafricain de Recherche Agronomique ICRA BP 122 Bangui Central African Republic

Institute for Evolutionary Ecology of the National Academy of Sciences of Ukraine Lebedev 37 Kyiv 03143 Ukraine

Institute of Biology Komi Scientific Center Ural Branch of Russian Academy of Sciences Kommunisticheskaya 28 Syktyvkar 167982 Russia

Instituto de Investigaciones de la Amazonía Peruana Av Abelardo Quiñones km 2 5 Iquitos Apartado Postal 784 Peru

Instituto Nacional de Pesquisas da Amazônia Coordenação de Pesquisas em Silvicultura Tropical Manaus 69060 001 Brazil

International Center for Tropical Botany Department of Biological Sciences Florida International University 11200 S W 8th Street Miami 33199 FL USA

Jardín Botánico de Missouri; Universidad Nacional de San Antonio Abad del Cusco Oxapampa Peru

Joint Remote Sensing Research Program School of Earth and Environmental Sciences University of Queensland Chamberlain Building Campbell Road St Lucia Campus Brisbane 4072 Australia

Laboratoire Evolution et Diversité Biologique CNRS Université Paul Sabatier Toulouse France

Laboratório de Ecologia Vegetal Universidade do Estado de Mato Grosso UNEMAT Campus de Nova Xavantina Nova Xavantina Mato Grosso 78 690 000 Brazil

Mensuration Unit Forestry Commission of Ghana 4 3rd Avenue Ridge Kumasi POB M434 Ghana

Morton Arboretum 4100 Illinois Rte 53 Lisle 60532 IL USA

Museo de Historia Natural Noel Kempff Mercado Universidad Autónoma Gabriel Rene Moreno Av Irala 565 casilla 2489 Santa Cruz Bolivia

Museu Universitário Universidade Federal do Acre BR 364 Km 04 Distrito Industrial Rio Branco 69915 559 Brazil

National University of Life and Environmental Sciences of Ukraine General Rodimtsev 19 Kyiv 3041 Ukraine

Naturalis Biodiversity Center Leiden The Netherlands

New Zealand Forest Research Institute Te Papa Tipu Innovation Park 49 Sala Street Rotorua 3046 New Zealand

Nicholas School of the Environment Duke University P O Box 90328 Durham NC 27708 USA

ONF ONF Réserve de Montabo Cayenne Cedex Cayenne BP 7002; 97307 French Guiana

Plant Systematic and Ecology Laboratory University of Yaoundé 1 P O Box 047 Yaounde Cameroon

Reshetnev Siberian state university of science and technology pr Mira 82 Krasnoyarsk 660049 Russia

Russian Institute of Continuous Education in Forestry Institutskaya 17 Pushkino 141200 Russia

School of Biological Sciences University of Aberdeen Cruickshank Building St Machar Drive Aberdeen AB24 3UU UK

School of Biology University of Leeds Leeds LS2 9JT UK

School of Geography and the Environment University of Oxford Oxford OX1 3QY UK

School of Geography University of Leeds Leeds LS2 9JT UK

School of Natural Sciences Bangor University Thoday Building Deiniol Rd Bangor LL57 2UW United Kingdom

SI Entomology Smithsonian Institution PO Box 37012 MRC 187 Washington DC DC 20013 7012 USA

Siberian Federal University Svobodnyy Ave 79 Krasnoyarsk 660041 Russia

Smithsonian Conservation Biology Institute 1100 Jefferson Dr SW Suite 3123 Washington DC 20560 0705 USA

Smithsonian Tropical Research Institute Balboa Ancon Panama 3092 Panama

Sodefor boulevard François Mitterrand Cocody Abidjan 01BP 3770 Côte d'Ivoire

Spatial Focus GmbH Vienna Austria

State Nature Reserve Denezhkin Kamen Lenina 6 Sverdlovsk reg Severouralsk 624480 Russia

The Field Musium 1400S Lake Shore Dr Chicago IL 60605 USA

The Landscapes and Livelihoods Group 20 Chambers St Edinburgh EH1 1JZ UK

U Gent Woodlab Laboratory of Wood Technology Department of Environment Ghent University Ghent 9000 Belgium

Unaffiliated Sommersbergseestrasse 291 Bad Aussee 8990 Austria

Universidad Autónoma del Beni Riberalta Bolivia

Universidad Autonoma Gabriel Rene Moreno Santa Cruz Bolivia

Universidad Politecnica de Madrid Calle Ramiro de Maeztu 7 Madrid 28040 Spain

University College London 30 Guilford Street London WC1N 1EH UK

University of Oregon 1585 E 13th Ave Eugene OR 97403 USA

W R T College of Agriculture and Forestry University of Liberia Capitol Hill Monrovia 9020 Liberia

World Wildlife Fund Calle Diego de Mendoza 299 Santa Cruz de la Sierra Bolivia

Přidružená datová sada

doi: 10.1038/ncomms7857 PubMed

Zobrazit více v PubMed

Bojinski S, et al. The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy. Bull. Am. Meteorol. Soc. 2014;95:1431–1443. doi: 10.1175/BAMS-D-13-00047.1. DOI

Pereira HM, et al. Essential Biodiversity Variables. Science. 2013;339:277–278. doi: 10.1126/science.1229931. PubMed DOI

Schepaschenko, D.

Chave Jérôme, Davies Stuart J., Phillips Oliver L., Lewis Simon L., Sist Plinio, Schepaschenko Dmitry, Armston John, Baker Tim R., Coomes David, Disney Mathias, Duncanson Laura, Hérault Bruno, Labrière Nicolas, Meyer Victoria, Réjou-Méchain Maxime, Scipal Klaus, Saatchi Sassan. Ground Data are Essential for Biomass Remote Sensing Missions. Surveys in Geophysics. 2019;40(4):863–880. doi: 10.1007/s10712-019-09528-w. DOI

Réjou-Méchain Maxime, Tanguy Ariane, Piponiot Camille, Chave Jérôme, Hérault Bruno. biomass : an r package for estimating above-ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution. 2017;8(9):1163–1167. doi: 10.1111/2041-210X.12753. DOI

Anderson‐Teixeira KJ, et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 2015;21:528–549. doi: 10.1111/gcb.12712. PubMed DOI

Malhi Y, et al. An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR) J. Veg. Sci. 2002;13:439–450. doi: 10.1111/j.1654-1103.2002.tb02068.x. DOI

Lewis SL, et al. Increasing carbon storage in intact African tropical forests. Nature. 2009;457:1003–1006. doi: 10.1038/nature07771. PubMed DOI

Qie L, et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 2017;8:1966. doi: 10.1038/s41467-017-01997-0. PubMed DOI PMC

Lopez‐Gonzalez G, Lewis SL, Burkitt M, Phillips OL. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. J. Veg. Sci. 2011;22:610–613. doi: 10.1111/j.1654-1103.2011.01312.x. DOI

Schepaschenko D, et al. A dataset of forest biomass structure for Eurasia. Sci. Data. 2017;4:201770. doi: 10.1038/sdata.2017.70. PubMed DOI PMC

Pietsch, S. A. Modelling ecosystem pools and fluxes.

Sist P, et al. The Tropical managed Forests Observatory: a research network addressing the future of tropical logged forests. Appl. Veg. Sci. 2015;18:171–174. doi: 10.1111/avsc.12125. DOI

TERN Auscover.

Condit RS, et al. Tropical forest dynamics across a rainfall gradient and the impact of an El Niño dry season. J. Trop. Ecol. 2004;20:51–72. doi: 10.1017/S0266467403001081. DOI

Liang J, et al. Positive biodiversity-productivity relationship predominant in global forests. Science. 2016;354:196. doi: 10.1126/science.aaf8957. PubMed DOI

Labrière N, et al. In situ reference datasets from the TropiSAR and AfriSAR campaigns in support of upcoming spaceborne biomass missions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018;11:3617–3627. doi: 10.1109/JSTARS.2018.2851606. DOI

Taylor P, et al. Landscape-scale controls on aboveground forest carbon stocks on the Osa peninsula, Costa Rica. PLOS ONE. 2015;10:e0126748. doi: 10.1371/journal.pone.0126748. PubMed DOI PMC

Hofhansl F, et al. Sensitivity of tropical forest aboveground productivity to climate anomalies in SW Costa Rica. Glob. Biogeochem. Cycles. 2014;28:1437–1454. doi: 10.1002/2014GB004934. DOI

Piponiot C, et al. Carbon recovery dynamics following disturbance by selective logging in Amazonian forests. eLife. 2016;5:e21394. doi: 10.7554/eLife.21394. PubMed DOI PMC

Lewis Simon L, et al. Above-ground biomass and structure of 260 African tropical forests. Philos. Trans. R. Soc. B Biol. Sci. 2013;368:20120295. doi: 10.1098/rstb.2012.0295. PubMed DOI PMC

Sullivan MJP, et al. Field methods for sampling tree height for tropical forest biomass estimation. Methods Ecol. Evol. 2018;9:1179–1189. doi: 10.1111/2041-210X.12962. PubMed DOI PMC

ter Steege H, et al. Hyperdominance in the Amazonian tree flora. Science. 2013;342:1243092. doi: 10.1126/science.1243092. PubMed DOI

Baker TR, et al. Fast demographic traits promote high diversification rates of Amazonian trees. Ecol. Lett. 2014;17:527–536. doi: 10.1111/ele.12252. PubMed DOI PMC

Johnson MO, et al. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models. Glob. Change Biol. 2016;22:3996–4013. doi: 10.1111/gcb.13315. PubMed DOI PMC

Aguirre‐Gutiérrez J, et al. Drier tropical forests are susceptible to functional changes in response to a long-term drought. Ecol. Lett. 2019;22:855–865. doi: 10.1111/ele.13243. PubMed DOI

Phillips OL, et al. Drought Sensitivity of the Amazon Rainforest. Science. 2009;323:1344–1347. doi: 10.1126/science.1164033. PubMed DOI

Esquivel‐Muelbert A, et al. Seasonal drought limits tree species across the Neotropics. Ecography. 2017;40:618–629. doi: 10.1111/ecog.01904. DOI

Feldpausch TR, et al. Amazon forest response to repeated droughts. Glob. Biogeochem. Cycles. 2016;30:964–982. doi: 10.1002/2015GB005133. DOI

Chave J, et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 2014;20:3177–3190. doi: 10.1111/gcb.12629. PubMed DOI

Feldpausch TR, et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences. 2012;9:3381–3403. doi: 10.5194/bg-9-3381-2012. DOI

Bastin J-F, et al. Pan-tropical prediction of forest structure from the largest trees. Glob. Ecol. Biogeogr. 2018;27:1366–1383. doi: 10.1111/geb.12803. DOI

Feldpausch TR, et al. Height-diameter allometry of tropical forest trees. Biogeosciences. 2011;8:1081–1106. doi: 10.5194/bg-8-1081-2011. DOI

Phillips OL. Changes in the Carbon Balance of Tropical Forests: Evidence from Long-Term Plots. Science. 1998;282:439–442. doi: 10.1126/science.282.5388.439. PubMed DOI

Slik JWF, et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr. 2013;22:1261–1271. doi: 10.1111/geb.12092. DOI

Hubau W, et al. The persistence of carbon in the African forest understory. Nat. Plants. 2019;5:133. doi: 10.1038/s41477-018-0316-5. PubMed DOI

Mitchard ETA, et al. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. Glob. Ecol. Biogeogr. 2014;23:935–946. doi: 10.1111/geb.12168. PubMed DOI PMC

Santoro M, et al. Forest growing stock volume of the northern hemisphere: Spatially explicit estimates for 2010 derived from Envisat ASAR. Remote Sens. Environ. 2015;168:316–334. doi: 10.1016/j.rse.2015.07.005. DOI

Valbuena R, et al. Enhancing of accuracy assessment for forest above-ground biomass estimates obtained from remote sensing via hypothesis testing and overfitting evaluation. Ecol. Model. 2017;366:15–26. doi: 10.1016/j.ecolmodel.2017.10.009. DOI

Thomas CD, et al. Extinction risk fromclimate change. Nature. 2004;427:145–148. doi: 10.1038/nature02121. PubMed DOI

Esquivel‐Muelbert A, et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 2019;25:39–56. doi: 10.1111/gcb.14413. PubMed DOI PMC

Brienen RJW, et al. Long-term decline of the Amazon carbon sink. Nature. 2015;519:344–348. doi: 10.1038/nature14283. PubMed DOI

Pan Y, et al. A large and persistent carbon sink in the world’s forests. Science. 2011;333:988–993. doi: 10.1126/science.1201609. PubMed DOI

Phillips OL, Hall P, Gentry AH, Sawyer SA, Vásquez R. Dynamics and species richness of tropical rain forests. Proc. Natl. Acad. Sci. 1994;91:2805–2809. doi: 10.1073/pnas.91.7.2805. PubMed DOI PMC

de Souza FC, et al. Evolutionary heritage influences Amazon tree ecology. Proc R Soc B. 2016;283:20161587. doi: 10.1098/rspb.2016.1587. PubMed DOI PMC

Coronado ENH, et al. Phylogenetic diversity of Amazonian tree communities. Divers. Distrib. 2015;21:1295–1307. doi: 10.1111/ddi.12357. DOI

ter Steege H, et al. Estimating the global conservation status of more than 15,000 Amazonian tree species. Sci. Adv. 2015;1:e1500936. doi: 10.1126/sciadv.1500936. PubMed DOI PMC

Sullivan MJP, et al. Diversity and carbon storage across the tropical forest biome. Sci. Rep. 2017;7:39102. doi: 10.1038/srep39102. PubMed DOI PMC

Fauset S, et al. Hyperdominance in Amazonian forest carbon cycling. Nat. Commun. 2015;6:6857. doi: 10.1038/ncomms7857. PubMed DOI PMC

Levis C, et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science. 2017;355:925–931. doi: 10.1126/science.aal0157. PubMed DOI

Willcock S, et al. Land cover change and carbon emissions over 100 years in an African biodiversity hotspot. Glob. Change Biol. 2016;22:2787–2800. doi: 10.1111/gcb.13218. PubMed DOI

Réjou-Méchain M, et al. Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences. 2014;11:6827–6840. doi: 10.5194/bg-11-6827-2014. DOI

Knapp N, Fischer R, Huth A. Linking lidar and forest modeling to assess biomass estimation across scales and disturbance states. Remote Sens. Environ. 2018;205:199–209. doi: 10.1016/j.rse.2017.11.018. DOI

Chave J, et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 2009;12:351–366. doi: 10.1111/j.1461-0248.2009.01285.x. PubMed DOI

Zanne AE, 2009. Global Wood Density Database. Dryad Digital Repository. DOI

Zagreev, V. V.

Schepaschenko D, et al. Improved estimates of biomass expansion factors for Russian forests. Forests. 2018;9:312. doi: 10.3390/f9060312. DOI

Schepaschenko D, 2019. A global reference dataset for remote sensing of forest biomass. The Forest Observation System approach. IIASA. PubMed DOI PMC

Baker TR, et al. Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob. Change Biol. 2004;10:545–562. doi: 10.1111/j.1365-2486.2004.00751.x. DOI

Marthews, T. R.

Phillips OL, et al. Species matter: wood density influences tropical forest biomass at multiple scales. Surv. Geophys. 2019 doi: 10.1007/s10712-019-09540-0. PubMed DOI PMC

Baker TR, et al. Maximising synergy among tropical plant systematists, ecologists, and evolutionary biologists. Trends Ecol. Evol. 2017;32:258–267. doi: 10.1016/j.tree.2017.01.007. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Forest Observation System, building a global reference dataset for remote sensing of forest biomass

. 2019 Oct 10 ; 6 (1) : 198. [epub] 20191010

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...