Field methods for sampling tree height for tropical forest biomass estimation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
29938017
PubMed Central
PMC5993227
DOI
10.1111/2041-210x.12962
PII: MEE312962
Knihovny.cz E-zdroje
- Klíčová slova
- above‐ground biomass estimation, allometry, carbon stocks, forest inventory, forest structure, sample size,
- Publikační typ
- časopisecké články MeSH
Quantifying the relationship between tree diameter and height is a key component of efforts to estimate biomass and carbon stocks in tropical forests. Although substantial site-to-site variation in height-diameter allometries has been documented, the time consuming nature of measuring all tree heights in an inventory plot means that most studies do not include height, or else use generic pan-tropical or regional allometric equations to estimate height.Using a pan-tropical dataset of 73 plots where at least 150 trees had in-field ground-based height measurements, we examined how the number of trees sampled affects the performance of locally derived height-diameter allometries, and evaluated the performance of different methods for sampling trees for height measurement.Using cross-validation, we found that allometries constructed with just 20 locally measured values could often predict tree height with lower error than regional or climate-based allometries (mean reduction in prediction error = 0.46 m). The predictive performance of locally derived allometries improved with sample size, but with diminishing returns in performance gains when more than 40 trees were sampled. Estimates of stand-level biomass produced using local allometries to estimate tree height show no over- or under-estimation bias when compared with biomass estimates using field measured heights. We evaluated five strategies to sample trees for height measurement, and found that sampling strategies that included measuring the heights of the ten largest diameter trees in a plot outperformed (in terms of resulting in local height-diameter models with low height prediction error) entirely random or diameter size-class stratified approaches.Our results indicate that even limited sampling of heights can be used to refine height-diameter allometries. We recommend aiming for a conservative threshold of sampling 50 trees per location for height measurement, and including the ten trees with the largest diameter in this sample.
Biodiversity and Landscape Unit Gembloux Agro Bio Tech Université de Liège Gembloux Belgium
Bolivia Centro de Investigación y Promoción del Campesinado Norte Amazónico Riberalta Bolivia
Bureau Waardenburg bv Culemborg The Netherlands
Carboforexpert Geneva Switzerland
Center for International Forestry Research Bogor Indonesia
Centre for Ecology and Hydrology Penicuik UK
Deltares Delft The Netherlands
Department of Biological Sciences Florida International University Miami FL USA
Department of Botany Faculty of Science Palacký University in Olomouc Czech Republic
Department of Geography University College London London UK
Department of Life Sciences Imperial College London Ascot UK
Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
Environment Department University of York Heslington York UK
Faculty of Forestry University of British Columbia Vancouver Canada
Faculty of Science Université de Kisangani Kisangani Democratic Republic of Congo
Geography College of Life and Environmental Sciences University of Exeter Exeter UK
Institute for Environmental Biology Utrecht University Utrecht The Netherlands
Jardín Botánico de Missouri Oxapampa Pasco Perú
Laboratory for Wood Biology and Xylarium Royal Museum for Central Africa Tervuren Belgium
Landscape Ecology and Plant Production Systems Unit Université Libre de Bruxelles Bruxelles Belgium
Royal Botanic Garden Edinburgh Edinburgh UK
School of Biological Sciences University of Aberdeen Aberdeen UK
School of Geography University of Leeds Leeds UK
School of Marine and Environmental Sciences James Cook University Cairns Qld Australia
School of Science and the Environment Manchester Metropolitan University Manchester UK
Smithsonian Tropical Research Institute Balboa Ancon Panama
The Czech Academy of Sciences Institute of Botany Brno Czech Republic
The Landscapes and Livelihoods Partnership Edinburgh UK
Tropenbos International Wageningen The Netherlands
Universidad Autónoma del Beni Riberalta Bolivia
Universidad Nacional de San Antonio Abad del Cusco Cusco Perú
Universidade do Estado de Mato Grosso Nova Xavantina Brazil
Universidade Estadual de Campinas Campinas Brazil
Université Paul Sabatier CNRS UMR 5174 Evolution et Diversité Biologique Toulouse France
Wageningen Envrionmental Research Wageningen University and Research Wageningen The Netherlands
Yale School of Forestry and Environmental Studies New Haven CT USA
Zobrazit více v PubMed
Avitabile, V. , Herold, M. , Heuvelink, G. B. M. , Lewis, S. L. , Phillips, O. L. , Asner, G. P. , … Willcock, S. (2016). An integrated pan‐tropical biomass map using multiple reference datasets. Global Change Biology, 22, 1406–1420. https://doi.org/10.1111/gcb.13139 PubMed DOI
Baccini, A. , Goetz, S. , Walker, W. , Laporte, N. , Sun, M. , Sulla‐Menashe, D. , … Friedl, M. (2012). Estimated carbon dioxide emissions from tropical deforestation improved by carbon‐density maps. Nature Climate Change, 2, 182–185. https://doi.org/10.1038/nclimate1354 DOI
Banin, L. , Feldpausch, T. R. , Phillips, O. L. , Baker, T. R. , Lloyd, J. , Affum‐Baffoe, K. , … Lewis, S. L. (2012). What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Global Ecology and Biogeography, 21, 1179–1190. https://doi.org/10.1111/j.1466-8238.2012.00778.x DOI
Banin, L. , Lewis, S. L. , Lopez‐Gonzalez, G. , Baker, T. R. , Quesada, C. A. , Chao, K.‐J. , … Phillips, O. L. (2014). Tropical forest wood production: A cross‐continental comparison. Journal of Ecology, 102, 1025–1037. https://doi.org/10.1111/1365-2745.12263 DOI
Bastin, J. F. , Barbier, N. , Réjou‐Méchain, M. , Fayolle, A. , Gourlet‐Fleury, S. , Maniatis, D. , … Bogaert, J. (2015). Seeing Central African forests through their largest trees. Scientific Reports, 5, 13156 https://doi.org/10.1038/srep13156 PubMed DOI PMC
Boden, T. A. , Marland, G. , & Andres, R. J. (2013). Global, Regional and National Fossil‐Fuel CO2 Emmisions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, TN, USA.
Brienen, R. J. W. , Phillips, O. L. , Feldpausch, T. R. , Gloor, E. , Baker, T. R. , Lloyd, J. , … Zagt, R. J. (2015). Long‐term decline of the Amazon carbon sink. Nature, 519, 344–348. https://doi.org/10.1038/nature14283 PubMed DOI
Brown, S. , Gillespie, A. J. R. , & Lugo, A. E. (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science, 35, 881–902.
Chave, J. , Andalo, C. , Brown, S. , Cairns, M. A. , Chambers, J. Q. , Eamus, D. , … Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, 87–99. https://doi.org/10.1007/s00442-005-0100-x PubMed DOI
Chave, J. , Coomes, D. , Jansen, S. , Lewis, S. L. , Swenson, N. G. , & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x PubMed DOI
Chave, J. , Réjou‐Méchain, M. , Búrquez, A. , Chidumayo, E. , Colgan, M. S. , Delitti, W. B. C. , … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20, 3177–3190. https://doi.org/10.1111/gcb.12629 PubMed DOI
Chisholm, R. A. , Muller‐Landau, H. C. , Abdul Rahman, K. , Bebber, D. P. , Bin, Y. , Bohlman, S. A. , … Zimmerman, J. K. (2013). Scale‐dependent relationships between tree species richness and ecosystem function in forests. Journal of Ecology, 101, 1214–1224. https://doi.org/10.1111/1365-2745.12132 DOI
Cuni‐Sanchez, A. , Pfeifer, M. , Marchant, R. , Calders, K. , Sørensen, C. L. , Pompeu, P. V. , … Burgess, N. D. (2017). New insights on above ground biomass and forest attributes in tropical montane forests. Forest Ecology and Management, 399, 235–246. https://doi.org/10.1016/j.foreco.2017.05.030 DOI
Detto, M. , Muller‐Landau, H. C. , Mascaro, J. , & Asner, G. P. (2013). Hydrological networks and associated topographic variation as templates for the spatial organization of tropical forest vegetation. PLoS ONE, 8, e76296 https://doi.org/10.1371/journal.pone.0076296 PubMed DOI PMC
Djomo, A. N. , Picard, N. , Fayolle, A. , Henry, M. , Ngomanda, A. , Ploton, P. , … Lejeune, P. (2016). Tree allometry for estimation of carbon stocks in African tropical forests. Forestry: An International Journal of Forest Research, 89, 446–455. https://doi.org/10.1093/forestry/cpw025 DOI
Duncanson, L. , Rourke, O. , & Dubayah, R. (2015). Small sample sizes yield biased allometric equations in temperate forests. Scientific Reports, 5, 17153 https://doi.org/10.1038/srep17153 PubMed DOI PMC
Elith, J. , & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159 DOI
Elzhov, T. V. , Mullen, K. M. , Spiess, A.‐N. , Bolker, B. , & Mullen, M. K. (2016). R Interface to the Levenberg‐Marguardt Nonlinear Least‐Squares Algorithm Found in MINPACK, Plus Support for Bounds. R package version 1.2‐1.
Farrior, C. E. , Bohlman, S. A. , Hubbell, S. , & Pacala, S. W. (2016). Dominance of the suppressed: Power‐law size structure in tropical forests. Science, 351, 155 https://doi.org/10.1126/science.aad0592 PubMed DOI
Fayolle, A. , Loubota Panzou, G. J. , Drouet, T. , Swaine, M. D. , Bauwens, S. , Vleminckx, J. , … Doucet, J.‐L. (2016). Taller trees, denser stands and greater biomass in semi‐deciduous than in evergreen lowland central African forests. Forest Ecology and Management, 374, 42–50. https://doi.org/10.1016/j.foreco.2016.04.033 DOI
Feldpausch, T. R. , Banin, L. , Phillips, O. L. , Baker, T. R. , Lewis, S. L. , Quesada, C. A. , … Lloyd, J. (2011). Height‐diameter allometry of tropical forest trees. Biogeosciences, 8, 1081–1106. https://doi.org/10.5194/bg-8-1081-2011 DOI
Feldpausch, T. R. , Lloyd, J. , Lewis, S. L. , Brienen, R. J. W. , Gloor, M. , Monteagudo Mendoza, A. , … Phillips, O. L. (2012). Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 9, 3381–3403. https://doi.org/10.5194/bg-9-3381-2012 DOI
Fewster, R. M. , Buckland, S. T. , Siriwardena, G. M. , Baillie, S. R. , & Wilson, J. D. (2000). Analysis of population trends for farmland birds using generalized additive models. Ecology, 81, 1970–1984. https://doi.org/10.1890/0012-9658(2000)081[1970:AOPTFF]2.0.CO;2 DOI
Forrester, D. I. , Benneter, A. , Bouriaud, O. , & Bauhus, J. (2017). Diversity and competition influence tree allometric relationships – Developing functions for mixed‐species forests. Journal of Ecology, 105, 761–774. https://doi.org/10.1111/1365-2745.12704 DOI
Global Forests Observations Initiative . (2013). https://www.reddcompass.org/measurement-estimation?fid=%2Fmgd%2FAppendix%2FF%ver=v2#gfoi-mgd-content
Goussanou, C. , Guendehou, S. , Assogbadjo, A. , Kaire, M. , Sinsin, B. , & Cuni‐Sanchez, A. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi‐deciduous forest. Silva Fennica, 50, 1474.
Hijmans, R. J. , Cameron, S. E. , Parra, J. L. , Jones, P. G. , & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978. https://doi.org/10.1002/(ISSN)1097-0088 DOI
Jantz, P. , Goetz, S. , & Laporte, N. (2014). Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics. Nature Climate Change, 4, 138–142. https://doi.org/10.1038/nclimate2105 DOI
Jucker, T. , Caspersen, J. , Chave, J. , Antin, C. , Barbier, N. , Bongers, F. , … Haeni, M. (2017). Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Global Change Biology, 23, 177–190. https://doi.org/10.1111/gcb.13388 PubMed DOI PMC
Kearsley, E. , de Haulleville, T. , Hufkens, K. , Kidimbu, A. , Toirambe, B. , Baert, G. , … Verbeeck, H. (2013). Conventional tree height–diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin. Nature Communications, 4, 2269. PubMed
Larjavaara, M. , & Muller‐Landau, H. C. (2013). Measuring tree height: A quantitative comparison of two common field methods in a moist tropical forest. Methods in Ecology and Evolution, 4, 793–801. https://doi.org/10.1111/2041-210X.12071 DOI
Ledo, A. , Cornulier, T. , Illian, J. B. , Iida, Y. , Kassim, A. R. , & Burslem, D. F. R. P. (2016). Re‐evaluation of individual diameter: Height allometric models to improve biomass estimation of tropical trees. Ecological Applications, 26, 2376–2382. https://doi.org/10.1002/eap.1450 PubMed DOI
Lewis, S. L. , Sonké, B. , Sunderland, T. , Begne, S. K. , Lopez‐Gonzalez, G. , van der Heijden, G. M. F. , … Zemagho, L. (2013). Above‐ground biomass and structure of 260 African tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20120295 https://doi.org/10.1098/rstb.2012.0295 PubMed DOI PMC
Lopez‐Gonzalez, G. , Lewis, S. L. , Burkitt, M. , & Phillips, O. L. (2011). ForestPlots.net: A web application and research tool to manage and analyse tropical forest plot data. Journal of Vegetation Science, 22, 610–613. https://doi.org/10.1111/j.1654-1103.2011.01312.x DOI
Lopez‐Gonzalez, G. , Sullivan, M. , & Baker, T. (2015). BiomasaFP: Tools for analysing data downloaded from ForestPlots.net. R package version 1.1. Retrieved from http://www.forestplots.net/en/resources/analysis
Malhi, Y. , Phillips, O. L. , Lloyd, J. , Baker, T. , Almeida, S. , … Vinceti, B. (2002). An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). Journal of Vegetation Science, 13, 439–450. https://doi.org/10.1111/j.1654-1103.2002.tb02068.x DOI
Molto, Q. , Hérault, B. , Boreux, J. J. , Daullet, M. , Rousteau, A. , & Rossi, V. (2014). Predicting tree heights for biomass estimates in tropical forests – A test from French Guiana. Biogeosciences, 11, 3121–3130. https://doi.org/10.5194/bg-11-3121-2014 DOI
O'Brien, S. T. , Hubbell, S. P. , Spiro, P. , Condit, R. , & Foster, R. B. (1995). Diameter, height, crown, and age relationship in eight neotropical tree species. Ecology, 76, 1926–1939. https://doi.org/10.2307/1940724 DOI
Pan, Y. , Birdsey, R. A. , Fang, J. , Houghton, R. , Kauppi, P. E. , Kurz, W. A. , … Hayes, D. (2011). A large and persistent carbon sink in the world's forests. Science, 333, 988–993. https://doi.org/10.1126/science.1201609 PubMed DOI
Phillips, O. , Baker, T. , Feldpausch, T. , & Brienen, R. (2009). RAINFOR field manual for plot establishment and remeasurement. Leeds, UK: University of Leeds.
Qie, L. , Lewis, S. L. , Sullivan, M. J. P. , Lopez‐Gonzalez, G. , Pickavance, G. C. , Sunderland, T. , … Phillips, O. L. (2017). Long‐term carbon sink in Borneo's forestshalted by drought and vulnerable to edge effects. Nature Communications, 8, 1966 https://doi.org/10.1038/s41467-017-01997-0 PubMed DOI PMC
R Core Team . (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Réjou‐Méchain, M. , Tanguy, A. , Piponiot, C. , Chave, J. , & Hérault, B. (2017). biomass: An r package for estimating above‐ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution, 8, 1163–1167.
Rutishauser, E. , Hérault, B. , Petronelli, P. , & Sist, P. (2016). Tree height reduction after selective logging in a tropical forest. Biotropica, 48, 285–289. https://doi.org/10.1111/btp.12326 DOI
Rutishauser, E. , Noor'an, F. , Laumonier, Y. , Halperin, J. , Hergoualc'h, K. , & Verchot, L. (2013). Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia. Forest Ecology and Management, 307, 219–225. https://doi.org/10.1016/j.foreco.2013.07.013 DOI
Ryan, M. G. , & Yoder, B. J. (1997). Hydraulic limits to tree height and tree growth. BioScience, 47, 235–242. https://doi.org/10.2307/1313077 DOI
Saatchi, S. S. , Harris, N. L. , Brown, S. , Lefsky, M. , Mitchard, E. T. A. , Salas, W. , … Morel, A. (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences, 108, 9899–9904. https://doi.org/10.1073/pnas.1019576108 PubMed DOI PMC
Slik, J. W. F. , Paoli, G. , McGuire, K. , Amaral, I. , Barroso, J. , Bastian, M. , … Zweifel, N. (2013). Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 22, 1261–1271. https://doi.org/10.1111/geb.12092 DOI
Stas, S. M. , Rutishauser, E. , Chave, J. , Anten, N. P. R. , & Laumonier, Y. (2017). Estimating the aboveground biomass in an old secondary forest on limestone in the Moluccas, Indonesia: Comparing locally developed versus existing allometric models. Forest Ecology and Management, 389, 27–34. https://doi.org/10.1016/j.foreco.2016.12.010 DOI
Sullivan, M. J. P. , Lewis, S. L. , Hubau, W. , Qie, L. , Baker, T. R. , Banin, L. F. , & Phillips, O. L. (2018). Data from Field methods for sampling tree height for tropical forest biomass estimation. ForestPlots.net. https://doi.org/10.5521/forestplots.net/2018_1 PubMed DOI PMC
Thomas, S. C. , Martin, A. R. , & Mycroft, E. E. (2015). Tropical trees in a wind‐exposed island ecosystem: Height‐diameter allometry and size at onset of maturity. Journal of Ecology, 103, 594–605. https://doi.org/10.1111/1365-2745.12378 DOI
Wood, S. N. (2006). Generalized additive models: An introduction with R. London, UK: Chapman and Hall.
Zanne, A. , Lopez‐Gonzalez, G. , Coomes, D. , Illic, J. , Jansen, S. , Lewis, S. , … Chave, J. (2009). Data from: Towards a worldwide wood economics spectrum. Dryad Digital Repository, https://doi.org/10.5061/dryad.234 PubMed DOI
Field methods for sampling tree height for tropical forest biomass estimation
Dryad
10.5061/dryad.234