-
Je něco špatně v tomto záznamu ?
Technical note: geometric morphometrics and sexual dimorphism of the greater sciatic notch in adults from two skeletal collections: the accuracy and reliability of sex classification
J. Velemínská, V. Krajíček, J. Dupej, JA. Goméz-Valdés, P. Velemínský, A. Šefčáková, J. Pelikán, G. Sánchez-Mejorada, J. Brůžek,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24114412
DOI
10.1002/ajpa.22373
Knihovny.cz E-zdroje
- MeSH
- analýza hlavních komponent MeSH
- antropologie fyzická metody MeSH
- lidé MeSH
- pánevní kosti anatomie a histologie MeSH
- pohlavní dimorfismus MeSH
- reprodukovatelnost výsledků MeSH
- support vector machine MeSH
- určení pohlaví podle kostry metody MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The greater sciatic notch (GSN) is one of the most important and frequently used characteristics for determining the sex of skeletons, but objective assessment of this characteristic is not without its difficulties. We tested the robustness of GSN sex classification on the basis of geometric morphometrics (GM) and support vector machines (SVM), using two different population samples. Using photographs, the shape of the GSN in 229 samples from two assemblages (documented collections of a Euroamerican population from the Maxwell Museum, University of New Mexico, and a Hispanic population from Universidad Nacional Autónoma de México, Mexico City) was segmented automatically and evaluated using six curve representations. The optimal dimensionality for each representation was determined by finding the best sex classification. The classification accuracy of the six curve representations in our study was similar but the highest and concurrently homologous cross-validated accuracy of 92% was achieved for a pooled sample using Fourier coefficient and Legendre polynomial methods. The success rate of our classification was influenced by the number of semilandmarks or coefficients and was only slightly affected by GSN marginal point positions. The intrapopulation variability of the female GSN shape was significantly lower compared with the male variability, possibly as a consequence of the intense selection pressure associated with reproduction. Males were misclassified more often than females. Our results show that by using a suitable GSN curve representation, a GM approach, and SVM analysis, it is possible to obtain a robust separation between the sexes that is stable for a multipopulation sample.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14063906
- 003
- CZ-PrNML
- 005
- 20140707121329.0
- 007
- ta
- 008
- 140704s2013 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/ajpa.22373 $2 doi
- 035 __
- $a (PubMed)24114412
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Velemínská, Jana $u Department of Anthropology and Human Genetics, Faculty of Science, Charles University in Prague, Prague, 12844, Czech Republic.
- 245 10
- $a Technical note: geometric morphometrics and sexual dimorphism of the greater sciatic notch in adults from two skeletal collections: the accuracy and reliability of sex classification / $c J. Velemínská, V. Krajíček, J. Dupej, JA. Goméz-Valdés, P. Velemínský, A. Šefčáková, J. Pelikán, G. Sánchez-Mejorada, J. Brůžek,
- 520 9_
- $a The greater sciatic notch (GSN) is one of the most important and frequently used characteristics for determining the sex of skeletons, but objective assessment of this characteristic is not without its difficulties. We tested the robustness of GSN sex classification on the basis of geometric morphometrics (GM) and support vector machines (SVM), using two different population samples. Using photographs, the shape of the GSN in 229 samples from two assemblages (documented collections of a Euroamerican population from the Maxwell Museum, University of New Mexico, and a Hispanic population from Universidad Nacional Autónoma de México, Mexico City) was segmented automatically and evaluated using six curve representations. The optimal dimensionality for each representation was determined by finding the best sex classification. The classification accuracy of the six curve representations in our study was similar but the highest and concurrently homologous cross-validated accuracy of 92% was achieved for a pooled sample using Fourier coefficient and Legendre polynomial methods. The success rate of our classification was influenced by the number of semilandmarks or coefficients and was only slightly affected by GSN marginal point positions. The intrapopulation variability of the female GSN shape was significantly lower compared with the male variability, possibly as a consequence of the intense selection pressure associated with reproduction. Males were misclassified more often than females. Our results show that by using a suitable GSN curve representation, a GM approach, and SVM analysis, it is possible to obtain a robust separation between the sexes that is stable for a multipopulation sample.
- 650 _2
- $a antropologie fyzická $x metody $7 D000885
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a pánevní kosti $x anatomie a histologie $7 D010384
- 650 _2
- $a analýza hlavních komponent $7 D025341
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a pohlavní dimorfismus $7 D012727
- 650 _2
- $a určení pohlaví podle kostry $x metody $7 D054881
- 650 _2
- $a support vector machine $7 D060388
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Krajíček, Václav
- 700 1_
- $a Dupej, Ján
- 700 1_
- $a Goméz-Valdés, Jorge A
- 700 1_
- $a Velemínský, Petr
- 700 1_
- $a Šefčáková, Alena
- 700 1_
- $a Pelikán, Josef
- 700 1_
- $a Sánchez-Mejorada, Gabriela
- 700 1_
- $a Brůžek, Jaroslav
- 773 0_
- $w MED00000282 $t American journal of physical anthropology $x 1096-8644 $g Roč. 152, č. 4 (2013), s. 558-65
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/24114412 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20140704 $b ABA008
- 991 __
- $a 20140707121618 $b ABA008
- 999 __
- $a ok $b bmc $g 1031390 $s 862638
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 152 $c 4 $d 558-65 $i 1096-8644 $m American journal of physical anthropology $n Am J Phys Anthropol $x MED00000282
- LZP __
- $a Pubmed-20140704