• Je něco špatně v tomto záznamu ?

Technical note: geometric morphometrics and sexual dimorphism of the greater sciatic notch in adults from two skeletal collections: the accuracy and reliability of sex classification

J. Velemínská, V. Krajíček, J. Dupej, JA. Goméz-Valdés, P. Velemínský, A. Šefčáková, J. Pelikán, G. Sánchez-Mejorada, J. Brůžek,

. 2013 ; 152 (4) : 558-65.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc14063906

The greater sciatic notch (GSN) is one of the most important and frequently used characteristics for determining the sex of skeletons, but objective assessment of this characteristic is not without its difficulties. We tested the robustness of GSN sex classification on the basis of geometric morphometrics (GM) and support vector machines (SVM), using two different population samples. Using photographs, the shape of the GSN in 229 samples from two assemblages (documented collections of a Euroamerican population from the Maxwell Museum, University of New Mexico, and a Hispanic population from Universidad Nacional Autónoma de México, Mexico City) was segmented automatically and evaluated using six curve representations. The optimal dimensionality for each representation was determined by finding the best sex classification. The classification accuracy of the six curve representations in our study was similar but the highest and concurrently homologous cross-validated accuracy of 92% was achieved for a pooled sample using Fourier coefficient and Legendre polynomial methods. The success rate of our classification was influenced by the number of semilandmarks or coefficients and was only slightly affected by GSN marginal point positions. The intrapopulation variability of the female GSN shape was significantly lower compared with the male variability, possibly as a consequence of the intense selection pressure associated with reproduction. Males were misclassified more often than females. Our results show that by using a suitable GSN curve representation, a GM approach, and SVM analysis, it is possible to obtain a robust separation between the sexes that is stable for a multipopulation sample.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc14063906
003      
CZ-PrNML
005      
20140707121329.0
007      
ta
008      
140704s2013 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/ajpa.22373 $2 doi
035    __
$a (PubMed)24114412
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Velemínská, Jana $u Department of Anthropology and Human Genetics, Faculty of Science, Charles University in Prague, Prague, 12844, Czech Republic.
245    10
$a Technical note: geometric morphometrics and sexual dimorphism of the greater sciatic notch in adults from two skeletal collections: the accuracy and reliability of sex classification / $c J. Velemínská, V. Krajíček, J. Dupej, JA. Goméz-Valdés, P. Velemínský, A. Šefčáková, J. Pelikán, G. Sánchez-Mejorada, J. Brůžek,
520    9_
$a The greater sciatic notch (GSN) is one of the most important and frequently used characteristics for determining the sex of skeletons, but objective assessment of this characteristic is not without its difficulties. We tested the robustness of GSN sex classification on the basis of geometric morphometrics (GM) and support vector machines (SVM), using two different population samples. Using photographs, the shape of the GSN in 229 samples from two assemblages (documented collections of a Euroamerican population from the Maxwell Museum, University of New Mexico, and a Hispanic population from Universidad Nacional Autónoma de México, Mexico City) was segmented automatically and evaluated using six curve representations. The optimal dimensionality for each representation was determined by finding the best sex classification. The classification accuracy of the six curve representations in our study was similar but the highest and concurrently homologous cross-validated accuracy of 92% was achieved for a pooled sample using Fourier coefficient and Legendre polynomial methods. The success rate of our classification was influenced by the number of semilandmarks or coefficients and was only slightly affected by GSN marginal point positions. The intrapopulation variability of the female GSN shape was significantly lower compared with the male variability, possibly as a consequence of the intense selection pressure associated with reproduction. Males were misclassified more often than females. Our results show that by using a suitable GSN curve representation, a GM approach, and SVM analysis, it is possible to obtain a robust separation between the sexes that is stable for a multipopulation sample.
650    _2
$a antropologie fyzická $x metody $7 D000885
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a pánevní kosti $x anatomie a histologie $7 D010384
650    _2
$a analýza hlavních komponent $7 D025341
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a pohlavní dimorfismus $7 D012727
650    _2
$a určení pohlaví podle kostry $x metody $7 D054881
650    _2
$a support vector machine $7 D060388
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Krajíček, Václav
700    1_
$a Dupej, Ján
700    1_
$a Goméz-Valdés, Jorge A
700    1_
$a Velemínský, Petr
700    1_
$a Šefčáková, Alena
700    1_
$a Pelikán, Josef
700    1_
$a Sánchez-Mejorada, Gabriela
700    1_
$a Brůžek, Jaroslav
773    0_
$w MED00000282 $t American journal of physical anthropology $x 1096-8644 $g Roč. 152, č. 4 (2013), s. 558-65
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24114412 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20140704 $b ABA008
991    __
$a 20140707121618 $b ABA008
999    __
$a ok $b bmc $g 1031390 $s 862638
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 152 $c 4 $d 558-65 $i 1096-8644 $m American journal of physical anthropology $n Am J Phys Anthropol $x MED00000282
LZP    __
$a Pubmed-20140704

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...