-
Je něco špatně v tomto záznamu ?
Significant relationships among frost tolerance and net photosynthetic rate, water use efficiency and dehydrin accumulation in cold-treated winter oilseed rapes
MO. Urban, M. Klíma, P. Vítámvás, J. Vašek, AA. Hilgert-Delgado, V. Kučera,
Jazyk angličtina Země Německo
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- aklimatizace MeSH
- analýza hlavních komponent MeSH
- analýza rozptylu MeSH
- Brassica napus fyziologie MeSH
- fotosyntéza fyziologie MeSH
- fyziologická adaptace * MeSH
- roční období * MeSH
- rostlinné proteiny metabolismus MeSH
- voda fyziologie MeSH
- zmrazování * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Five winter oilseed rape cultivars (Benefit, Californium, Cortes, Ladoga, Navajo) were subjected to 30 days of cold treatment (4 °C) to examine the effect of cold on acquired frost tolerance (FT), dehydrin (DHN) content, and photosynthesis-related parameters. The main aim of this study was to determine whether there are relationships between FT (expressed as LT50 values) and the other parameters measured in the cultivars. While the cultivar Benefit accumulated two types of DHNs (D45 and D35), the other cultivars accumulated three additional DHNs (D97, D47, and D37). The similar-sized DHNs (D45 and D47) were the most abundant; the others exhibited significantly lower accumulations. The highest correlations were detected between LT50 and DHN accumulation (r=-0.815), intrinsic water use efficiency (WUEi; r=-0.643), net photosynthetic rate (r=-0.628), stomatal conductance (r=0.511), and intracellular/intercellular CO2 concentration (r=0.505). Those cultivars that exhibited higher Pn rate in cold (and further a significant increase in WUEi) had higher levels of DHNs and also higher FT. No significant correlation was observed between LT50 and E, PRI, or NDVI. Overall, we have shown the selected physiological parameters to be able to distinguish different FT cultivars of winter oilseed rape.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14063953
- 003
- CZ-PrNML
- 005
- 20201014083710.0
- 007
- ta
- 008
- 140704s2013 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jplph.2013.07.012 $2 doi
- 035 __
- $a (PubMed)24054752
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Urban, Milan Oldřich $u Crop Research Institute, Drnovská 507, Praha 6 - Ruzyně, Czech Republic. Electronic address: olinek.vcelar@seznam.cz. $7 xx0250460
- 245 10
- $a Significant relationships among frost tolerance and net photosynthetic rate, water use efficiency and dehydrin accumulation in cold-treated winter oilseed rapes / $c MO. Urban, M. Klíma, P. Vítámvás, J. Vašek, AA. Hilgert-Delgado, V. Kučera,
- 520 9_
- $a Five winter oilseed rape cultivars (Benefit, Californium, Cortes, Ladoga, Navajo) were subjected to 30 days of cold treatment (4 °C) to examine the effect of cold on acquired frost tolerance (FT), dehydrin (DHN) content, and photosynthesis-related parameters. The main aim of this study was to determine whether there are relationships between FT (expressed as LT50 values) and the other parameters measured in the cultivars. While the cultivar Benefit accumulated two types of DHNs (D45 and D35), the other cultivars accumulated three additional DHNs (D97, D47, and D37). The similar-sized DHNs (D45 and D47) were the most abundant; the others exhibited significantly lower accumulations. The highest correlations were detected between LT50 and DHN accumulation (r=-0.815), intrinsic water use efficiency (WUEi; r=-0.643), net photosynthetic rate (r=-0.628), stomatal conductance (r=0.511), and intracellular/intercellular CO2 concentration (r=0.505). Those cultivars that exhibited higher Pn rate in cold (and further a significant increase in WUEi) had higher levels of DHNs and also higher FT. No significant correlation was observed between LT50 and E, PRI, or NDVI. Overall, we have shown the selected physiological parameters to be able to distinguish different FT cultivars of winter oilseed rape.
- 650 _2
- $a aklimatizace $7 D000064
- 650 12
- $a fyziologická adaptace $7 D000222
- 650 _2
- $a analýza rozptylu $7 D000704
- 650 _2
- $a Brassica napus $x fyziologie $7 D029688
- 650 12
- $a zmrazování $7 D005615
- 650 _2
- $a fotosyntéza $x fyziologie $7 D010788
- 650 _2
- $a rostlinné proteiny $x metabolismus $7 D010940
- 650 _2
- $a analýza hlavních komponent $7 D025341
- 650 12
- $a roční období $7 D012621
- 650 _2
- $a voda $x fyziologie $7 D014867
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Klíma, Miroslav $7 ola2009531559
- 700 1_
- $a Vítámvás, Pavel, $d 1976- $7 jo20191026654
- 700 1_
- $a Vašek, Jakub
- 700 1_
- $a Hilgert-Delgado, Alois $7 ola20191033149
- 700 1_
- $a Kučera, Vratislav, $d 1941- $7 ola2009531560
- 773 0_
- $w MED00008138 $t Journal of plant physiology $x 1618-1328 $g Roč. 170, č. 18 (2013), s. 1600-8
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/24054752 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20140704 $b ABA008
- 991 __
- $a 20201014083706 $b ABA008
- 999 __
- $a ok $b bmc $g 1031437 $s 862685
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 170 $c 18 $d 1600-8 $i 1618-1328 $m Journal of plant physiology $n J. plant physiol. $x MED00008138
- LZP __
- $a Pubmed-20140704