• Something wrong with this record ?

Elucidating heterogeneity of IgA1 hinge-region O-glycosylation by use of MALDI-TOF/TOF mass spectrometry: role of cysteine alkylation during sample processing

V. Franc, P. Řehulka, M. Raus, J. Stulík, J. Novak, MB. Renfrow, M. Šebela,

. 2013 ; 92 (-) : 299-312.

Language English Country Netherlands

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

UNLABELLED: Determining disease-associated changes in protein glycosylation provides a better understanding of pathogenesis. This work focuses on human immunoglobulin A1 (IgA1), where aberrant O-glycosylation plays a key role in the pathogenesis of IgA nephropathy (IgAN). Normal IgA1 hinge region carries 3 to 6 O-glycans consisting of N-acetylgalactosamine (GalNAc) and galactose (Gal); both sugars may be sialylated. In IgAN patients, some O-glycans on a fraction of IgA1 molecules are Gal-deficient. Here we describe a sample preparation protocol with optimized cysteine alkylation of a Gal-deficient polymeric IgA1 myeloma protein prior to in-gel digestion and analysis of the digest by MALDI-TOF/TOF mass spectrometry (MS). Following a novel strategy, IgA1 hinge-region O-glycopeptides were fractionated by reversed-phase liquid chromatography using a microgradient device and identified by MALDI-TOF/TOF tandem MS (MS/MS). The acquired MS/MS spectra were interpreted manually and by means of our own software. This allowed assigning up to six O-glycosylation sites and demonstration, for the first time, of the distribution of isomeric O-glycoforms having the same molecular mass, but a different glycosylation pattern. The most abundant Gal-deficient O-glycoforms were GalNAc4Gal3 and GalNAc5Gal4 with one Gal-deficient site and GalNAc5Gal3 and GalNAc4Gal2 with two Gal-deficient sites. The most frequent Gal-deficient sites were at Ser230 and/or Thr236. BIOLOGICAL SIGNIFICANCE: In this work, we studied the O-glycosylation in the hinge region of human immunoglobulin A1 (IgA1). Aberrant glycosylation of the protein plays a key role in the pathogenesis of IgA nephropathy. Thus identification of the O-glycan composition of IgA1 is important for a deeper understanding of the disease mechanism, biomarker discovery and validation, and implementation and monitoring of disease-specific therapies. We developed a new procedure for elucidating the heterogeneity of IgA1 O-glycosylation. After running a polyacrylamide gel electrophoresis under denaturing conditions, the heavy chain of IgA1 was subjected to in-gel digestion by trypsin. O-glycopeptides were separated from the digest on capillary columns using a microgradient chromatographic device (replacing commonly used liquid chromatographs) and subjected to MALDI-TOF/TOF mass spectrometry (MS) and tandem mass spectrometry (MS/MS) involving post-source decay fragmentation. We show that the complete modification of cysteines by iodoacetamide prior to electrophoresis is critical for successful MS/MS analyses on the way to deciphering the microheterogeneity of O-glycosylation in IgA1. Similarly, the removal of the excess of the reagent is equally important. The acquired MS/MS allowed assigning up to six O-glycosylation sites and identification of isomeric O-glycoforms. We show that our simplified approach is efficient and has a high potential to provide a method for the rapid assessment of IgA1 heterogeneity that is a less expensive and yet corroborating alternative to LC-(high-resolution)-MS protocols. The novelty and biological significance reside in the demonstration, for the first time, of the distribution of the most abundant isoforms of HR O-glycopeptides of IgA1. As another new feature, we introduce a software solution for the interpretation of MS/MS data of O-glycopeptide isoforms, which provides the possibility of fast and easier data processing. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc14064086
003      
CZ-PrNML
005      
20140709123643.0
007      
ta
008      
140704s2013 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jprot.2013.07.013 $2 doi
035    __
$a (PubMed)23891555
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Franc, Vojtěch $u Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic.
245    10
$a Elucidating heterogeneity of IgA1 hinge-region O-glycosylation by use of MALDI-TOF/TOF mass spectrometry: role of cysteine alkylation during sample processing / $c V. Franc, P. Řehulka, M. Raus, J. Stulík, J. Novak, MB. Renfrow, M. Šebela,
520    9_
$a UNLABELLED: Determining disease-associated changes in protein glycosylation provides a better understanding of pathogenesis. This work focuses on human immunoglobulin A1 (IgA1), where aberrant O-glycosylation plays a key role in the pathogenesis of IgA nephropathy (IgAN). Normal IgA1 hinge region carries 3 to 6 O-glycans consisting of N-acetylgalactosamine (GalNAc) and galactose (Gal); both sugars may be sialylated. In IgAN patients, some O-glycans on a fraction of IgA1 molecules are Gal-deficient. Here we describe a sample preparation protocol with optimized cysteine alkylation of a Gal-deficient polymeric IgA1 myeloma protein prior to in-gel digestion and analysis of the digest by MALDI-TOF/TOF mass spectrometry (MS). Following a novel strategy, IgA1 hinge-region O-glycopeptides were fractionated by reversed-phase liquid chromatography using a microgradient device and identified by MALDI-TOF/TOF tandem MS (MS/MS). The acquired MS/MS spectra were interpreted manually and by means of our own software. This allowed assigning up to six O-glycosylation sites and demonstration, for the first time, of the distribution of isomeric O-glycoforms having the same molecular mass, but a different glycosylation pattern. The most abundant Gal-deficient O-glycoforms were GalNAc4Gal3 and GalNAc5Gal4 with one Gal-deficient site and GalNAc5Gal3 and GalNAc4Gal2 with two Gal-deficient sites. The most frequent Gal-deficient sites were at Ser230 and/or Thr236. BIOLOGICAL SIGNIFICANCE: In this work, we studied the O-glycosylation in the hinge region of human immunoglobulin A1 (IgA1). Aberrant glycosylation of the protein plays a key role in the pathogenesis of IgA nephropathy. Thus identification of the O-glycan composition of IgA1 is important for a deeper understanding of the disease mechanism, biomarker discovery and validation, and implementation and monitoring of disease-specific therapies. We developed a new procedure for elucidating the heterogeneity of IgA1 O-glycosylation. After running a polyacrylamide gel electrophoresis under denaturing conditions, the heavy chain of IgA1 was subjected to in-gel digestion by trypsin. O-glycopeptides were separated from the digest on capillary columns using a microgradient chromatographic device (replacing commonly used liquid chromatographs) and subjected to MALDI-TOF/TOF mass spectrometry (MS) and tandem mass spectrometry (MS/MS) involving post-source decay fragmentation. We show that the complete modification of cysteines by iodoacetamide prior to electrophoresis is critical for successful MS/MS analyses on the way to deciphering the microheterogeneity of O-glycosylation in IgA1. Similarly, the removal of the excess of the reagent is equally important. The acquired MS/MS allowed assigning up to six O-glycosylation sites and identification of isomeric O-glycoforms. We show that our simplified approach is efficient and has a high potential to provide a method for the rapid assessment of IgA1 heterogeneity that is a less expensive and yet corroborating alternative to LC-(high-resolution)-MS protocols. The novelty and biological significance reside in the demonstration, for the first time, of the distribution of the most abundant isoforms of HR O-glycopeptides of IgA1. As another new feature, we introduce a software solution for the interpretation of MS/MS data of O-glycopeptide isoforms, which provides the possibility of fast and easier data processing. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
650    _2
$a alkylace $7 D000478
650    _2
$a cystein $x krev $x chemie $7 D003545
650    _2
$a IgA nefropatie $x krev $7 D005922
650    _2
$a glykosylace $7 D006031
650    _2
$a lidé $7 D006801
650    _2
$a imunoglobulin A $x krev $x chemie $7 D007070
650    12
$a odběr biologického vzorku $7 D013048
650    _2
$a spektrometrie hmotnostní - ionizace laserem za účasti matrice $x metody $7 D019032
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Řehulka, Pavel
700    1_
$a Raus, Martin
700    1_
$a Stulík, Jiří
700    1_
$a Novak, Jan
700    1_
$a Renfrow, Matthew B
700    1_
$a Šebela, Marek
773    0_
$w MED00166847 $t Journal of proteomics $x 1876-7737 $g Roč. 92, č. - (2013), s. 299-312
856    41
$u https://pubmed.ncbi.nlm.nih.gov/23891555 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20140704 $b ABA008
991    __
$a 20140709123935 $b ABA008
999    __
$a ok $b bmc $g 1031570 $s 862818
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 92 $c - $d 299-312 $i 1876-7737 $m Journal of proteomics $n J Proteomics $x MED00166847
LZP    __
$a Pubmed-20140704

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...