Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Positive solutions of advanced differential systems

J. Diblík, M. Kúdelčíková,

. 2013 ; 2013 (-) : 613832.

Language English Country England, Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't

We study asymptotic behavior of solutions of general advanced differential systems y(t) = F(t, y(t)), where F : Ω → [Symbol: see text] (n) is a continuous quasi-bounded functional which satisfies a local Lipschitz condition with respect to the second argument and Ω is a subset in [Symbol: see text] × C(r)(n), C(r)(n) := C([0, r], [Symbol: see text] (n)), y t [Symbol: see text]C(r)(n), and y t (θ) = y(t + θ), θ [Symbol: see text] [0, r]. A monotone iterative method is proposed to prove the existence of a solution defined for t → ∞ with the graph coordinates lying between graph coordinates of two (lower and upper) auxiliary vector functions. This result is applied to scalar advanced linear differential equations. Criteria of existence of positive solutions are given and their asymptotic behavior is discussed.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc14074456
003      
CZ-PrNML
005      
20141006123233.0
007      
ta
008      
141006s2013 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1155/2013/613832 $2 doi
035    __
$a (PubMed)24288496
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Diblík, Josef $u Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Brno University of Technology, Veveří 331/95, 602 00 Brno, Czech Republic ; Department of Mathematics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, 616 00 Brno, Czech Republic.
245    10
$a Positive solutions of advanced differential systems / $c J. Diblík, M. Kúdelčíková,
520    9_
$a We study asymptotic behavior of solutions of general advanced differential systems y(t) = F(t, y(t)), where F : Ω → [Symbol: see text] (n) is a continuous quasi-bounded functional which satisfies a local Lipschitz condition with respect to the second argument and Ω is a subset in [Symbol: see text] × C(r)(n), C(r)(n) := C([0, r], [Symbol: see text] (n)), y t [Symbol: see text]C(r)(n), and y t (θ) = y(t + θ), θ [Symbol: see text] [0, r]. A monotone iterative method is proposed to prove the existence of a solution defined for t → ∞ with the graph coordinates lying between graph coordinates of two (lower and upper) auxiliary vector functions. This result is applied to scalar advanced linear differential equations. Criteria of existence of positive solutions are given and their asymptotic behavior is discussed.
650    12
$a matematické pojmy $7 D055641
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kúdelčíková, Mária
773    0_
$w MED00181094 $t TheScientificWorldJournal $x 1537-744X $g Roč. 2013, č. - (2013), s. 613832
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24288496 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20141006 $b ABA008
991    __
$a 20141006123710 $b ABA008
999    __
$a ok $b bmc $g 1042339 $s 873368
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 2013 $c - $d 613832 $i 1537-744X $m TheScientificWorldJournal $n ScientificWorldJournal $x MED00181094
LZP    __
$a Pubmed-20141006

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...