-
Je něco špatně v tomto záznamu ?
G-quadruplexes as sensing probes
B. Ruttkay-Nedecky, J. Kudr, L. Nejdl, D. Maskova, R. Kizek, V. Adam,
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
NLK
Directory of Open Access Journals
od 1997
Free Medical Journals
od 1997
PubMed Central
od 2001
Europe PubMed Central
od 2001
ProQuest Central
od 1997-01-01
Open Access Digital Library
od 1997-01-01
Medline Complete (EBSCOhost)
od 2009-03-01
Health & Medicine (ProQuest)
od 1997-01-01
- MeSH
- biosenzitivní techniky * MeSH
- delece genu MeSH
- DNA katalytická chemie MeSH
- DNA chemie MeSH
- G-kvadruplexy * MeSH
- ionty analýza chemie MeSH
- kovy analýza chemie MeSH
- lidé MeSH
- nádorový supresorový protein p53 chemie genetika MeSH
- nanočástice chemie MeSH
- nukleové kyseliny analýza chemie MeSH
- organické látky analýza chemie MeSH
- proteiny analýza chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Guanine-rich sequences of DNA are able to create tetrastranded structures known as G-quadruplexes; they are formed by the stacking of planar G-quartets composed of four guanines paired by Hoogsteen hydrogen bonding. G-quadruplexes act as ligands for metal ions and aptamers for various molecules. Interestingly, the G-quadruplexes form a complex with anionic porphyrin hemin and exhibit peroxidase-like activity. This review focuses on overview of sensing techniques based on G-quadruplex complexes with anionic porphyrins for detection of various analytes, including metal ions such as K+, Ca2+, Ag+, Hg2+, Cu2+, Pb2+, Sr2+, organic molecules, nucleic acids, and proteins. Principles of G-quadruplex-based detection methods involve DNA conformational change caused by the presence of analyte which leads to a decrease or an increase in peroxidase activity, fluorescence, or electrochemical signal of the used probe. The advantages of various detection techniques are also discussed.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14074460
- 003
- CZ-PrNML
- 005
- 20141006125106.0
- 007
- ta
- 008
- 141006s2013 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/molecules181214760 $2 doi
- 035 __
- $a (PubMed)24288003
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Ruttkay-Nedecky, Branislav $u Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic. vojtech.adam@mendelu.cz.
- 245 10
- $a G-quadruplexes as sensing probes / $c B. Ruttkay-Nedecky, J. Kudr, L. Nejdl, D. Maskova, R. Kizek, V. Adam,
- 520 9_
- $a Guanine-rich sequences of DNA are able to create tetrastranded structures known as G-quadruplexes; they are formed by the stacking of planar G-quartets composed of four guanines paired by Hoogsteen hydrogen bonding. G-quadruplexes act as ligands for metal ions and aptamers for various molecules. Interestingly, the G-quadruplexes form a complex with anionic porphyrin hemin and exhibit peroxidase-like activity. This review focuses on overview of sensing techniques based on G-quadruplex complexes with anionic porphyrins for detection of various analytes, including metal ions such as K+, Ca2+, Ag+, Hg2+, Cu2+, Pb2+, Sr2+, organic molecules, nucleic acids, and proteins. Principles of G-quadruplex-based detection methods involve DNA conformational change caused by the presence of analyte which leads to a decrease or an increase in peroxidase activity, fluorescence, or electrochemical signal of the used probe. The advantages of various detection techniques are also discussed.
- 650 _2
- $a zvířata $7 D000818
- 650 12
- $a biosenzitivní techniky $7 D015374
- 650 _2
- $a DNA $x chemie $7 D004247
- 650 _2
- $a DNA katalytická $x chemie $7 D021881
- 650 12
- $a G-kvadruplexy $7 D054856
- 650 _2
- $a delece genu $7 D017353
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a ionty $x analýza $x chemie $7 D007477
- 650 _2
- $a kovy $x analýza $x chemie $7 D008670
- 650 _2
- $a nanočástice $x chemie $7 D053758
- 650 _2
- $a nukleové kyseliny $x analýza $x chemie $7 D009696
- 650 _2
- $a organické látky $x analýza $x chemie $7 D009930
- 650 _2
- $a proteiny $x analýza $x chemie $7 D011506
- 650 _2
- $a nádorový supresorový protein p53 $x chemie $x genetika $7 D016159
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Kudr, Jiri
- 700 1_
- $a Nejdl, Lukas
- 700 1_
- $a Maskova, Darina
- 700 1_
- $a Kizek, Rene
- 700 1_
- $a Adam, Vojtěch $7 xx0064599
- 773 0_
- $w MED00180394 $t Molecules (Basel, Switzerland) $x 1420-3049 $g Roč. 18, č. 12 (2013), s. 14760-79
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/24288003 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20141006 $b ABA008
- 991 __
- $a 20141006125543 $b ABA008
- 999 __
- $a ok $b bmc $g 1042343 $s 873372
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 18 $c 12 $d 14760-79 $i 1420-3049 $m Molecules $n Molecules $x MED00180394
- LZP __
- $a Pubmed-20141006