Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

When less is more: a simple predictive model for repeated prostate biopsy outcomes

O. Vencalek, K. Facevicova, T. Furst, M. Grepl,

. 2013 ; 37 (6) : 864-9.

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc14074619
E-zdroje Online Plný text

NLK ProQuest Central od 2009-07-01 do Před 2 měsíci
Medline Complete (EBSCOhost) od 2012-10-01 do 2015-06-30
Nursing & Allied Health Database (ProQuest) od 2009-07-01 do Před 2 měsíci
Health & Medicine (ProQuest) od 2009-07-01 do Před 2 měsíci
Health Management Database (ProQuest) od 2009-07-01 do Před 2 měsíci
Public Health Database (ProQuest) od 2009-07-01 do Před 2 měsíci

OBJECTIVES: To present a new predictive model for repeated prostate biopsy outcomes. Several practical problems are described that arise when searching for a proper model among those that already exist. A new model is developed with only two explanatory variables and a simple graphical output. METHODS: This is a retrospective cohort study based on data collected from December 2006 to June 2011 at the Clinic of Urology of the University Hospital in Olomouc, Czech Republic. The cohort consists of 221 patients who underwent the first repeated biopsy after an initial biopsy with a negative outcome. All patients had prostate-specific antigen (PSA) levels between 1.5 and 16.5 ng/mL and a prostate volume not greater than 100mL. A logistic regression model was fitted. RESULTS: Of the 221 patients, 29 (13%) were diagnosed with prostate cancer on the repeated biopsy. The final model includes the PSA level and the transitory zone volume as predictors. Its accuracy is 76.4%. The cut-off point of 0.0687 in the predicted positive repeated biopsy outcome assures 95% sensitivity and prevents 42% of unnecessary biopsies. CONCLUSIONS: The accuracy of the model is comparable to that of more complex models (with more than two predictors) published in the literature. The model includes only two routinely measured variables, and hence it is accessible for a wide range of practitioners. The simple graphical outcome makes the model even more attractive.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc14074619
003      
CZ-PrNML
005      
20141007115829.0
007      
ta
008      
141006s2013 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.canep.2013.08.015 $2 doi
035    __
$a (PubMed)24094934
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Vencalek, Ondrej $u Dpt. Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacky University in Olomouc, 17. listopadu 12, 772 00 Olomouc, Czech Republic. Electronic address: ondrej.vencalek@upol.cz.
245    10
$a When less is more: a simple predictive model for repeated prostate biopsy outcomes / $c O. Vencalek, K. Facevicova, T. Furst, M. Grepl,
520    9_
$a OBJECTIVES: To present a new predictive model for repeated prostate biopsy outcomes. Several practical problems are described that arise when searching for a proper model among those that already exist. A new model is developed with only two explanatory variables and a simple graphical output. METHODS: This is a retrospective cohort study based on data collected from December 2006 to June 2011 at the Clinic of Urology of the University Hospital in Olomouc, Czech Republic. The cohort consists of 221 patients who underwent the first repeated biopsy after an initial biopsy with a negative outcome. All patients had prostate-specific antigen (PSA) levels between 1.5 and 16.5 ng/mL and a prostate volume not greater than 100mL. A logistic regression model was fitted. RESULTS: Of the 221 patients, 29 (13%) were diagnosed with prostate cancer on the repeated biopsy. The final model includes the PSA level and the transitory zone volume as predictors. Its accuracy is 76.4%. The cut-off point of 0.0687 in the predicted positive repeated biopsy outcome assures 95% sensitivity and prevents 42% of unnecessary biopsies. CONCLUSIONS: The accuracy of the model is comparable to that of more complex models (with more than two predictors) published in the literature. The model includes only two routinely measured variables, and hence it is accessible for a wide range of practitioners. The simple graphical outcome makes the model even more attractive.
650    _2
$a dospělí $7 D000328
650    _2
$a senioři $7 D000368
650    _2
$a senioři nad 80 let $7 D000369
650    _2
$a jehlová biopsie $7 D001707
650    12
$a metody pro podporu rozhodování $7 D003661
650    _2
$a následné studie $7 D005500
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    12
$a statistické modely $7 D015233
650    _2
$a prognóza $7 D011379
650    _2
$a prostatický specifický antigen $x krev $7 D017430
650    _2
$a nádory prostaty $x krev $x diagnóza $x chirurgie $7 D011471
650    _2
$a retrospektivní studie $7 D012189
651    _2
$a Česká republika $7 D018153
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Facevicova, Kamila
700    1_
$a Furst, Tomas
700    1_
$a Grepl, Michal
773    0_
$w MED00166636 $t Cancer epidemiology $x 1877-783X $g Roč. 37, č. 6 (2013), s. 864-9
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24094934 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20141006 $b ABA008
991    __
$a 20141007120307 $b ABA008
999    __
$a ok $b bmc $g 1042502 $s 873531
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 37 $c 6 $d 864-9 $i 1877-783X $m Cancer epidemiology $n Cancer Epidemiol $x MED00166636
LZP    __
$a Pubmed-20141006

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...