-
Je něco špatně v tomto záznamu ?
When less is more: a simple predictive model for repeated prostate biopsy outcomes
O. Vencalek, K. Facevicova, T. Furst, M. Grepl,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
ProQuest Central
od 2009-07-01 do Před 2 měsíci
Medline Complete (EBSCOhost)
od 2012-10-01 do 2015-06-30
Nursing & Allied Health Database (ProQuest)
od 2009-07-01 do Před 2 měsíci
Health & Medicine (ProQuest)
od 2009-07-01 do Před 2 měsíci
Health Management Database (ProQuest)
od 2009-07-01 do Před 2 měsíci
Public Health Database (ProQuest)
od 2009-07-01 do Před 2 měsíci
- MeSH
- dospělí MeSH
- jehlová biopsie MeSH
- lidé středního věku MeSH
- lidé MeSH
- metody pro podporu rozhodování * MeSH
- nádory prostaty krev diagnóza chirurgie MeSH
- následné studie MeSH
- prognóza MeSH
- prostatický specifický antigen krev MeSH
- retrospektivní studie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- statistické modely * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
OBJECTIVES: To present a new predictive model for repeated prostate biopsy outcomes. Several practical problems are described that arise when searching for a proper model among those that already exist. A new model is developed with only two explanatory variables and a simple graphical output. METHODS: This is a retrospective cohort study based on data collected from December 2006 to June 2011 at the Clinic of Urology of the University Hospital in Olomouc, Czech Republic. The cohort consists of 221 patients who underwent the first repeated biopsy after an initial biopsy with a negative outcome. All patients had prostate-specific antigen (PSA) levels between 1.5 and 16.5 ng/mL and a prostate volume not greater than 100mL. A logistic regression model was fitted. RESULTS: Of the 221 patients, 29 (13%) were diagnosed with prostate cancer on the repeated biopsy. The final model includes the PSA level and the transitory zone volume as predictors. Its accuracy is 76.4%. The cut-off point of 0.0687 in the predicted positive repeated biopsy outcome assures 95% sensitivity and prevents 42% of unnecessary biopsies. CONCLUSIONS: The accuracy of the model is comparable to that of more complex models (with more than two predictors) published in the literature. The model includes only two routinely measured variables, and hence it is accessible for a wide range of practitioners. The simple graphical outcome makes the model even more attractive.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14074619
- 003
- CZ-PrNML
- 005
- 20141007115829.0
- 007
- ta
- 008
- 141006s2013 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.canep.2013.08.015 $2 doi
- 035 __
- $a (PubMed)24094934
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Vencalek, Ondrej $u Dpt. Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacky University in Olomouc, 17. listopadu 12, 772 00 Olomouc, Czech Republic. Electronic address: ondrej.vencalek@upol.cz.
- 245 10
- $a When less is more: a simple predictive model for repeated prostate biopsy outcomes / $c O. Vencalek, K. Facevicova, T. Furst, M. Grepl,
- 520 9_
- $a OBJECTIVES: To present a new predictive model for repeated prostate biopsy outcomes. Several practical problems are described that arise when searching for a proper model among those that already exist. A new model is developed with only two explanatory variables and a simple graphical output. METHODS: This is a retrospective cohort study based on data collected from December 2006 to June 2011 at the Clinic of Urology of the University Hospital in Olomouc, Czech Republic. The cohort consists of 221 patients who underwent the first repeated biopsy after an initial biopsy with a negative outcome. All patients had prostate-specific antigen (PSA) levels between 1.5 and 16.5 ng/mL and a prostate volume not greater than 100mL. A logistic regression model was fitted. RESULTS: Of the 221 patients, 29 (13%) were diagnosed with prostate cancer on the repeated biopsy. The final model includes the PSA level and the transitory zone volume as predictors. Its accuracy is 76.4%. The cut-off point of 0.0687 in the predicted positive repeated biopsy outcome assures 95% sensitivity and prevents 42% of unnecessary biopsies. CONCLUSIONS: The accuracy of the model is comparable to that of more complex models (with more than two predictors) published in the literature. The model includes only two routinely measured variables, and hence it is accessible for a wide range of practitioners. The simple graphical outcome makes the model even more attractive.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a senioři nad 80 let $7 D000369
- 650 _2
- $a jehlová biopsie $7 D001707
- 650 12
- $a metody pro podporu rozhodování $7 D003661
- 650 _2
- $a následné studie $7 D005500
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 12
- $a statistické modely $7 D015233
- 650 _2
- $a prognóza $7 D011379
- 650 _2
- $a prostatický specifický antigen $x krev $7 D017430
- 650 _2
- $a nádory prostaty $x krev $x diagnóza $x chirurgie $7 D011471
- 650 _2
- $a retrospektivní studie $7 D012189
- 651 _2
- $a Česká republika $7 D018153
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Facevicova, Kamila
- 700 1_
- $a Furst, Tomas
- 700 1_
- $a Grepl, Michal
- 773 0_
- $w MED00166636 $t Cancer epidemiology $x 1877-783X $g Roč. 37, č. 6 (2013), s. 864-9
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/24094934 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20141006 $b ABA008
- 991 __
- $a 20141007120307 $b ABA008
- 999 __
- $a ok $b bmc $g 1042502 $s 873531
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 37 $c 6 $d 864-9 $i 1877-783X $m Cancer epidemiology $n Cancer Epidemiol $x MED00166636
- LZP __
- $a Pubmed-20141006