-
Je něco špatně v tomto záznamu ?
TRF1 negotiates TTAGGG repeat-associated replication problems by recruiting the BLM helicase and the TPP1/POT1 repressor of ATR signaling
M. Zimmermann, T. Kibe, S. Kabir, T. de Lange,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
NLK
Free Medical Journals
od 1987 do Před 6 měsíci
Freely Accessible Science Journals
od 1987-03-01 do Před 6 měsíci
PubMed Central
od 1997 do Před 6 měsíci
Europe PubMed Central
od 1997 do Před 6 měsíci
Open Access Digital Library
od 1987-01-01
Open Access Digital Library
od 1987-03-01
PubMed
25344324
DOI
10.1101/gad.251611.114
Knihovny.cz E-zdroje
- MeSH
- aktivace enzymů MeSH
- aminopeptidasy genetika metabolismus MeSH
- ATM protein metabolismus MeSH
- dipeptidylpeptidasy a tripeptidylpeptidasy genetika metabolismus MeSH
- DNA vazebné proteiny metabolismus MeSH
- genový knockout MeSH
- helikasy RecQ genetika metabolismus MeSH
- kultivované buňky MeSH
- mikrosatelitní repetice genetika MeSH
- mutace MeSH
- protein TRF1 genetika metabolismus MeSH
- proteiny vázající telomery genetika metabolismus MeSH
- replikace DNA genetika MeSH
- serinové proteasy genetika metabolismus MeSH
- signální transdukce MeSH
- telomery genetika MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
The semiconservative replication of telomeres is facilitated by the shelterin component TRF1. Without TRF1, replication forks stall in the telomeric repeats, leading to ATR kinase signaling upon S-phase progression, fragile metaphase telomeres that resemble the common fragile sites (CFSs), and the association of sister telomeres. In contrast, TRF1 does not contribute significantly to the end protection functions of shelterin. We addressed the mechanism of TRF1 action using mouse conditional knockouts of BLM, TRF1, TPP1, and Rap1 in combination with expression of TRF1 and TIN2 mutants. The data establish that TRF1 binds BLM to facilitate lagging but not leading strand telomeric DNA synthesis. As the template for lagging strand telomeric DNA synthesis is the TTAGGG repeat strand, TRF1-bound BLM is likely required to remove secondary structures formed by these sequences. In addition, the data establish that TRF1 deploys TIN2 and the TPP1/POT1 heterodimers in shelterin to prevent ATR during telomere replication and repress the accompanying sister telomere associations. Thus, TRF1 uses two distinct mechanisms to promote replication of telomeric DNA and circumvent the consequences of replication stress. These data are relevant to the expression of CFSs and provide insights into TIN2, which is compromised in dyskeratosis congenita (DC) and related disorders.
Central European Institute of Technology Masaryk University Brno 625 00 Czech Republic
Laboratory for Cell Biology and Genetics The Rockefeller University New York New York 10065 USA
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15014018
- 003
- CZ-PrNML
- 005
- 20150427105019.0
- 007
- ta
- 008
- 150420s2014 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1101/gad.251611.114 $2 doi
- 035 __
- $a (PubMed)25344324
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Zimmermann, Michal $u Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10065, USA; Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic.
- 245 10
- $a TRF1 negotiates TTAGGG repeat-associated replication problems by recruiting the BLM helicase and the TPP1/POT1 repressor of ATR signaling / $c M. Zimmermann, T. Kibe, S. Kabir, T. de Lange,
- 520 9_
- $a The semiconservative replication of telomeres is facilitated by the shelterin component TRF1. Without TRF1, replication forks stall in the telomeric repeats, leading to ATR kinase signaling upon S-phase progression, fragile metaphase telomeres that resemble the common fragile sites (CFSs), and the association of sister telomeres. In contrast, TRF1 does not contribute significantly to the end protection functions of shelterin. We addressed the mechanism of TRF1 action using mouse conditional knockouts of BLM, TRF1, TPP1, and Rap1 in combination with expression of TRF1 and TIN2 mutants. The data establish that TRF1 binds BLM to facilitate lagging but not leading strand telomeric DNA synthesis. As the template for lagging strand telomeric DNA synthesis is the TTAGGG repeat strand, TRF1-bound BLM is likely required to remove secondary structures formed by these sequences. In addition, the data establish that TRF1 deploys TIN2 and the TPP1/POT1 heterodimers in shelterin to prevent ATR during telomere replication and repress the accompanying sister telomere associations. Thus, TRF1 uses two distinct mechanisms to promote replication of telomeric DNA and circumvent the consequences of replication stress. These data are relevant to the expression of CFSs and provide insights into TIN2, which is compromised in dyskeratosis congenita (DC) and related disorders.
- 650 _2
- $a aminopeptidasy $x genetika $x metabolismus $7 D000626
- 650 _2
- $a ATM protein $x metabolismus $7 D064007
- 650 _2
- $a kultivované buňky $7 D002478
- 650 _2
- $a replikace DNA $x genetika $7 D004261
- 650 _2
- $a DNA vazebné proteiny $x metabolismus $7 D004268
- 650 _2
- $a dipeptidylpeptidasy a tripeptidylpeptidasy $x genetika $x metabolismus $7 D004152
- 650 _2
- $a aktivace enzymů $7 D004789
- 650 _2
- $a genový knockout $7 D055786
- 650 _2
- $a mikrosatelitní repetice $x genetika $7 D018895
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a helikasy RecQ $x genetika $x metabolismus $7 D053484
- 650 _2
- $a serinové proteasy $x genetika $x metabolismus $7 D057057
- 650 _2
- $a signální transdukce $7 D015398
- 650 _2
- $a telomery $x genetika $7 D016615
- 650 _2
- $a proteiny vázající telomery $x genetika $x metabolismus $7 D034501
- 650 _2
- $a protein TRF1 $x genetika $x metabolismus $7 D035321
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kibe, Tatsuya $u Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10065, USA;
- 700 1_
- $a Kabir, Shaheen $u Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10065, USA;
- 700 1_
- $a de Lange, Titia $u Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10065, USA; delange@mail.rockefeller.edu.
- 773 0_
- $w MED00001897 $t Genes & development $x 1549-5477 $g Roč. 28, č. 22 (2014), s. 2477-91
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25344324 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20150420 $b ABA008
- 991 __
- $a 20150427105323 $b ABA008
- 999 __
- $a ok $b bmc $g 1071599 $s 896896
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 28 $c 22 $d 2477-91 $i 1549-5477 $m Genes & development $n Genes Dev $x MED00001897
- LZP __
- $a Pubmed-20150420