• Je něco špatně v tomto záznamu ?

Relaxed functional constraints on triplicate α-globin gene in the bank vole suggest a different evolutionary history from other rodents

S. Marková, JB. Searle, P. Kotlík,

. 2014 ; 113 (1) : 64-73.

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc15014483
E-zdroje Online Plný text

NLK Free Medical Journals od 2011
PubMed Central od 2011 do Před 1 rokem
Europe PubMed Central od 2011 do Před 1 rokem
ProQuest Central od 2000-01-01 do Před 1 rokem
Open Access Digital Library od 1947-01-01
Medline Complete (EBSCOhost) od 1996-01-01 do 2015-12-31
Health & Medicine (ProQuest) od 2000-01-01 do Před 1 rokem
Public Health Database (ProQuest) od 2000-01-01 do Před 1 rokem

Gene duplication plays an important role in the origin of evolutionary novelties, but the mechanisms responsible for the retention and functional divergence of the duplicated copy are not fully understood. The α-globin genes provide an example of a gene family with different numbers of gene duplicates among rodents. Whereas Rattus and Peromyscus each have three adult α-globin genes (HBA-T1, HBA-T2 and HBA-T3), Mus has only two copies. High rates of amino acid evolution in the independently derived HBA-T3 genes of Peromyscus and Rattus have been attributed to positive selection. Using RACE PCR, reverse transcription-PCR (RT-PCR) and RNA-seq, we show that another rodent, the bank vole Clethrionomys glareolus, possesses three transcriptionally active α-globin genes. The bank vole HBA-T3 gene is distinguished from each HBA-T1 and HBA-T2 by 20 amino acids and is transcribed 23- and 4-fold lower than HBA-T1 and HBA-T2, respectively. Polypeptides corresponding to all three genes are detected by electrophoresis, demonstrating that the translated products of HBA-T3 are present in adult erythrocytes. Patterns of codon substitution and the presence of low-frequency null alleles suggest a postduplication relaxation of purifying selection on bank vole HBA-T3.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15014483
003      
CZ-PrNML
005      
20150427110027.0
007      
ta
008      
150420s2014 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/hdy.2014.12 $2 doi
035    __
$a (PubMed)24595364
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Marková, S $u Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic.
245    10
$a Relaxed functional constraints on triplicate α-globin gene in the bank vole suggest a different evolutionary history from other rodents / $c S. Marková, JB. Searle, P. Kotlík,
520    9_
$a Gene duplication plays an important role in the origin of evolutionary novelties, but the mechanisms responsible for the retention and functional divergence of the duplicated copy are not fully understood. The α-globin genes provide an example of a gene family with different numbers of gene duplicates among rodents. Whereas Rattus and Peromyscus each have three adult α-globin genes (HBA-T1, HBA-T2 and HBA-T3), Mus has only two copies. High rates of amino acid evolution in the independently derived HBA-T3 genes of Peromyscus and Rattus have been attributed to positive selection. Using RACE PCR, reverse transcription-PCR (RT-PCR) and RNA-seq, we show that another rodent, the bank vole Clethrionomys glareolus, possesses three transcriptionally active α-globin genes. The bank vole HBA-T3 gene is distinguished from each HBA-T1 and HBA-T2 by 20 amino acids and is transcribed 23- and 4-fold lower than HBA-T1 and HBA-T2, respectively. Polypeptides corresponding to all three genes are detected by electrophoresis, demonstrating that the translated products of HBA-T3 are present in adult erythrocytes. Patterns of codon substitution and the presence of low-frequency null alleles suggest a postduplication relaxation of purifying selection on bank vole HBA-T3.
650    _2
$a zvířata $7 D000818
650    _2
$a Arvicolinae $x genetika $7 D003411
650    _2
$a sekvence nukleotidů $7 D001483
650    _2
$a Bayesova věta $7 D001499
650    _2
$a klonování DNA $7 D003001
650    _2
$a DNA primery $x genetika $7 D017931
650    _2
$a elektroforéza $7 D004586
650    _2
$a erytrocyty $x metabolismus $7 D004912
650    _2
$a duplicitní geny $x genetika $7 D020131
650    12
$a genetická variace $7 D014644
650    _2
$a modely genetické $7 D008957
650    _2
$a molekulární sekvence - údaje $7 D008969
650    12
$a fylogeneze $7 D010802
650    _2
$a polymerázová řetězová reakce s reverzní transkripcí $7 D020133
650    12
$a selekce (genetika) $7 D012641
650    _2
$a sekvenční analýza RNA $7 D017423
650    _2
$a druhová specificita $7 D013045
650    _2
$a alfa-globiny $x genetika $7 D055542
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Searle, J B $u Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.
700    1_
$a Kotlík, P $u Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic.
773    0_
$w MED00002030 $t Heredity $x 1365-2540 $g Roč. 113, č. 1 (2014), s. 64-73
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24595364 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20150420 $b ABA008
991    __
$a 20150427110331 $b ABA008
999    __
$a ok $b bmc $g 1072064 $s 897361
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 113 $c 1 $d 64-73 $i 1365-2540 $m Heredity $n Heredity $x MED00002030
LZP    __
$a Pubmed-20150420

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...