Relaxed functional constraints on triplicate α-globin gene in the bank vole suggest a different evolutionary history from other rodents
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24595364
PubMed Central
PMC4815648
DOI
10.1038/hdy.2014.12
PII: hdy201412
Knihovny.cz E-zdroje
- MeSH
- alfa-globiny genetika MeSH
- Arvicolinae genetika MeSH
- Bayesova věta MeSH
- DNA primery genetika MeSH
- druhová specificita MeSH
- duplicitní geny genetika MeSH
- elektroforéza MeSH
- erytrocyty metabolismus MeSH
- fylogeneze * MeSH
- genetická variace * MeSH
- klonování DNA MeSH
- modely genetické MeSH
- molekulární sekvence - údaje MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza RNA MeSH
- selekce (genetika) * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alfa-globiny MeSH
- DNA primery MeSH
Gene duplication plays an important role in the origin of evolutionary novelties, but the mechanisms responsible for the retention and functional divergence of the duplicated copy are not fully understood. The α-globin genes provide an example of a gene family with different numbers of gene duplicates among rodents. Whereas Rattus and Peromyscus each have three adult α-globin genes (HBA-T1, HBA-T2 and HBA-T3), Mus has only two copies. High rates of amino acid evolution in the independently derived HBA-T3 genes of Peromyscus and Rattus have been attributed to positive selection. Using RACE PCR, reverse transcription-PCR (RT-PCR) and RNA-seq, we show that another rodent, the bank vole Clethrionomys glareolus, possesses three transcriptionally active α-globin genes. The bank vole HBA-T3 gene is distinguished from each HBA-T1 and HBA-T2 by 20 amino acids and is transcribed 23- and 4-fold lower than HBA-T1 and HBA-T2, respectively. Polypeptides corresponding to all three genes are detected by electrophoresis, demonstrating that the translated products of HBA-T3 are present in adult erythrocytes. Patterns of codon substitution and the presence of low-frequency null alleles suggest a postduplication relaxation of purifying selection on bank vole HBA-T3.
Zobrazit více v PubMed
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. (1990). Basic local alignment search tool. J Mol Biol 215: 403–410. PubMed
Arnold K, Bordoli L, Kopp J, Schwede T. (2006). The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195–201. PubMed
Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N. (2010). ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 38: W529–W533. PubMed PMC
Baker KE, Parker R. (2004). Nonsense-mediated mRNA decay: terminating erroneous gene expression. Curr Opin Cell Biol 16: 293. PubMed
Betrán E, Long M. (2002). Expansion of genome coding regions by acquisition of new genes. Genetica 115: 65–80. PubMed
Betrán E, Rozas J, Navarro A, Barbadilla A. (1997). The estimation of the number and the length distribution of gene conversion tracts from population DNA sequence data. Genetics 146: 89–99. PubMed PMC
Bielawski JP, Yang Z. (2004). A maximum likelihood method for detecting functional divergence at individual codon sites, with application to gene family evolution. J Mol Evol 59: 121–132. PubMed
Brodsky I, Dennis LH, Kahn SB, Brady LW. (1966). Normal mouse erythropoiesis. I. The role of the spleen in mouse erythropoiesis. Cancer Res 26: 198–201. PubMed
Campos R, Storz JF, Ferrand N. (2012). Copy number polymorphism in the α-globin gene cluster of European rabbit (Oryctolagus cuniculus). Heredity 108: 531–536. PubMed PMC
Cheng TC, Polmar SK, Kazazian HH. (1974). Isolation and characterization of modified globin messenger ribonucleic acid from erythropoietic mouse spleen. J Biol Chem 249: 1781–1788. PubMed
Colangelo P, Aloise G, Franchini P, Amori G. (2012). Mitochondrial DNA reveals hidden diversity and an ancestral lineage of the bank vole in the Italian peninsula. J Zool 287: 41–52.
Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH et al. (2011). The ecoresponsive genome of Daphnia pulex. Science 331: 555–561. PubMed PMC
Cook JA, Runck AM, Conroy CJ. (2004). Historical biogeography at the crossroads of the northern continents: molecular phylogenetics of red-backed voles (Rodentia: Arvicolinae). Mol Phylogenet Evol 30: 767–777. PubMed
Darriba D, Taboada GL, Doallo R, Posada D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9: 772. PubMed PMC
Ding Y, Zhou Q, Wang W. (2012). Origins of new genes and evolution of their novel functions. Annu Rev Ecol Evol Syst 43: 345–363.
Duffy LK, Genaux CT, Stratton LP. (1976). Amino acid differences between the α-chains from two hemoglobins of the yellow-cheeked vole (family Cricetidae). Biochem Genet 14: 809–821. PubMed
Fabre P-H, Hautier L, Dimitrov D, Douzery EJP. (2012). A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evol Biol 12: 88. PubMed PMC
Ferrand N. (1989). Biochemical and genetic studies on rabbit hemoglobin. I. Electrophoretic polymorphism of the beta chain. Biochem Genet 27: 673–678. PubMed
Fontanillas P, Landry CR, Wittkopp PJ, Russ C, Gruber JD, Nusbaum C et al. (2010). Key considerations for measuring allelic expression on a genomic scale using high-throughput sequencing. Mol Ecol 19: 212–227. PubMed PMC
Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. (1999). Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151: 1531–1545. PubMed PMC
Friedman R, Austin LH. (2001). Pattern and timing of gene duplication in animal genomes. Genome Res 11: 1842–1847. PubMed PMC
Hahn MW. (2009). Distinguishing among evolutionary models for the maintenance of gene duplicates. J Hered 100: 605–617. PubMed
Hoffmann FG, Opazo JC, Storz JF. (2008). Rapid rates of lineage specific gene duplication and deletion in the α-globin gene family. Mol Biol Evol 25: 591–602. PubMed
Hoffmann FG, Storz JF. (2007). The αD-globin gene originated via duplication of an embryonic α-like globin gene in the ancestor of tetrapod vertebrates. Mol Biol Evol 24: 1982–1990. PubMed
Hoffmann FG, Storz JF, Gorr TA, Opazo JC. (2010). Lineage-specific patterns of functional diversification in the α- and β-globin gene families of tetrapod vertebrates. Mol Biol Evol 27: 1126–1138. PubMed PMC
Huelsenbeck JP, Ronquist F. (2001). MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754–755. PubMed
Hughes AL. (1994). The evolution of functionally novel proteins after gene duplication. Proc Biol Sci 256: 119–124. PubMed
Innan H, Kondrashov F. (2010). The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 11: 97–108. PubMed
Kaessmann H. (2010). Origins, evolution, and phenotypic impact of new genes. Genome Res 20: 1313–1326. PubMed PMC
Kosakovsky Pond SL, Frost SDW. (2005). Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21: 2531–2533. PubMed
Kosakovsky Pond SL, Frost SDW, Muse SV. (2005). HyPhy: hypothesis testing using phylogenies. Bioinformatics 21: 676–679. PubMed
Librado P, Rozas J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. PubMed
Lynch M, Conery JS. (2003). The evolutionary demography of duplicate genes. J Struct Funct Genomics 3: 35–44. PubMed
Lynch M, Conery JS. (2000). The evolutionary fate and consequences of duplicate genes. Science 290: 1151–1155. PubMed
Maquat LE. (2004). Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 5: 89–99. PubMed
Maquat LE. (2005). Nonsense-mediated mRNA decay in mammals. J Cell Sci 118: 1773–1776. PubMed
Nielsen R, Yang Z. (1998). Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148: 929–936. PubMed PMC
Ohno S. (1970) Evolution by Gene Duplication. Springer Verlag: New York.
Pegueroles C, Laurie S, Alba MM. (2013). Accelerated evolution after gene duplication: a time-dependent process affecting just one copy. Mol Biol Evol 30: 1830–1842. PubMed
Robin GC, Russell RJ, Cutler DJ, Oakeshott JG. (2000). The evolution of an alpha-esterase pseudogene inactivated in the Drosophila melanogaster lineage. Mol Biol Evol 17: 563–575. PubMed
Ronquist F, Huelsenbeck JP. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. PubMed
Sawyer SA. (1989). Statistical tests for detecting gene conversion. Mol Biol Evol 6: 526–538. PubMed
Sawyer SA. (1999). GENECONV: A computer package for the statistical detection of gene conversion. Distributed by the author, Department of Mathematics, Washington University in St. Louis, available at http://www.math.wustl.edu/~sawyer.
Storz JF. (2007). Hemoglobin function and physiological adaptation to hypoxia in high-altitude mammals. J Mammal 88: 24–31.
Storz JF. (2009). Genome evolution: gene duplication and the resolution of adaptive conflict. Heredity 102: 99–100. PubMed PMC
Storz JF, Baze M, Waite JL, Hoffmann FG, Opazo JC, Hayes JP. (2007. b). Complex signatures of selection and gene conversion in the duplicated globin genes of house mice. Genetics 177: 481–500. PubMed PMC
Storz JF, Hoffmann FG, Opazo JC, Moriyama H. (2008). Adaptive functional divergence among triplicated α-globin genes in rodents. Genetics 178: 1623–1638. PubMed PMC
Storz JF, Opazo JC, Hoffmann FG. (2011). Phylogenetic diversification of the globin gene superfamily in chordates. IUBMB Life 63: 313–322. PubMed PMC
Storz JF, Opazo JC, Hoffmann FG. (2013). Gene duplication, genome duplication, and the functional diversification of vertebrate globins. Mol Phylogenet Evol 66: 469–478. PubMed PMC
Storz JF, Runck AM, Moriyama H, Weber RE, Fago A. (2010). Genetic differences in hemoglobin function between highland and lowland deer mice. J Exp Biol 213: 565–2574. PubMed PMC
Storz JF, Sabatino SJ, Hoffmann FG, Gering EJ, Moriyama H, Ferrand N et al. (2007. a). The molecular basis of high-altitude adaptation in deer mice. PLoS Genet 3: 448–459. PubMed PMC
Swofford DL. (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods) Version 4.0b10 Sinauer Associates: Sunderland, Massachusetts.
Tautz D, Domazet-Lošo T. (2011). The evolutionary origin of orphan genes. Nat Rev Genet 12: 692–702. PubMed
Tesakov AS, Lebedev VS, Bannikova AA, Abramson NI. (2010). Clethrionomys Tilesius, 1850 is the valid generic name for red-backed voles and Myodes Pallas, 1811 is a junior synonym of Lemmus Link, 1795. Russian J Theriol 9: 83–86.
Thein SL. (2004). Genetic insights into the clinical diversity of beta thalassaemia. Br J Haematol 124: 264–274. PubMed
Tufarelli C, Hardison R, Miller W, Hughes J, Clark K, Ventress N et al. (2004). Comparative analysis of the alpha-like globin clusters in mouse, rat, and human chromosomes indicates a mechanism underlying breaks in conserved synteny. Genome Res 14: 623–630. PubMed PMC
Wołk E. (1983). Ontogenetic changes in the hemoglobin of the bank vole. Acta Theriol 28: 387–396.
Yang Z. (1997). PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13: 555–556. PubMed
Yang Z. (1998). Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15: 568–573. PubMed
Yang Z. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591. PubMed
Yang Z, Wong WSW, Nielsen R. (2005). Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22: 1107–1118. PubMed
Yingzhong Y, Yue C, Guoen J, Zhenzhong B, Lan M, Haixia Y et al. (2007). Molecular cloning and characterization of hemoglobin alpha and beta chains from plateau pika (Ochotona curzoniae) living at high altitude. J Biochem Mol Biol 40: 426–431. PubMed
Zhang J. (2003). Evolution by gene duplication: an update. Trends Ecol Evol 18: 292–298.
Zhang J, Nielsen R, Yang Z. (2005). Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22: 2472–2479. PubMed
Zwickl D. (2006) Genetic Algorithm Approaches for the Phylogenetic Analysis of Large Biological Sequence Datasets Under the Maximum Likelihood Criterion PhD Thesis. University of Texas at Austin, Austin, TX.
Genomics of end-Pleistocene population replacement in a small mammal
GENBANK
KF958827, KF958828, KF958829, KF958830, KF958831, KF958832, KF958833, KF958834, KF958835, KF958836, KF958837