-
Je něco špatně v tomto záznamu ?
Plant embryogenesis requires AUX/LAX-mediated auxin influx
HS. Robert, W. Grunewald, M. Sauer, B. Cannoot, M. Soriano, R. Swarup, D. Weijers, M. Bennett, K. Boutilier, J. Friml,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1953 do Před 6 měsíci
Open Access Digital Library
od 1953-03-01 do Před 6 měsíci
PubMed
25617434
DOI
10.1242/dev.115832
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis embryologie genetika metabolismus MeSH
- biologický transport genetika fyziologie MeSH
- Brassica napus embryologie genetika metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- rostlinné proteiny metabolismus MeSH
- semena rostlinná cytologie metabolismus MeSH
- signální transdukce genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The plant hormone auxin and its directional transport are known to play a crucial role in defining the embryonic axis and subsequent development of the body plan. Although the role of PIN auxin efflux transporters has been clearly assigned during embryonic shoot and root specification, the role of the auxin influx carriers AUX1 and LIKE-AUX1 (LAX) proteins is not well established. Here, we used chemical and genetic tools on Brassica napus microspore-derived embryos and Arabidopsis thaliana zygotic embryos, and demonstrate that AUX1, LAX1 and LAX2 are required for both shoot and root pole formation, in concert with PIN efflux carriers. Furthermore, we uncovered a positive-feedback loop between MONOPTEROS (ARF5)-dependent auxin signalling and auxin transport. This MONOPTEROS-dependent transcriptional regulation of auxin influx (AUX1, LAX1 and LAX2) and auxin efflux (PIN1 and PIN4) carriers by MONOPTEROS helps to maintain proper auxin transport to the root tip. These results indicate that auxin-dependent cell specification during embryo development requires balanced auxin transport involving both influx and efflux mechanisms, and that this transport is maintained by a positive transcriptional feedback on auxin signalling.
Department of Plant Systems Biology Flanders Institute for Biotechnology 3400 Klosterneuburg Austria
Laboratory of Biochemistry Wageningen University 6703 HA Wageningen The Netherlands
Wageningen University and Research Centre P O Box 619 6700 AP Wageningen The Netherlands
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15022851
- 003
- CZ-PrNML
- 005
- 20150731103705.0
- 007
- ta
- 008
- 150709s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1242/dev.115832 $2 doi
- 035 __
- $a (PubMed)25617434
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Robert, Hélène S $u Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB) and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic.
- 245 10
- $a Plant embryogenesis requires AUX/LAX-mediated auxin influx / $c HS. Robert, W. Grunewald, M. Sauer, B. Cannoot, M. Soriano, R. Swarup, D. Weijers, M. Bennett, K. Boutilier, J. Friml,
- 520 9_
- $a The plant hormone auxin and its directional transport are known to play a crucial role in defining the embryonic axis and subsequent development of the body plan. Although the role of PIN auxin efflux transporters has been clearly assigned during embryonic shoot and root specification, the role of the auxin influx carriers AUX1 and LIKE-AUX1 (LAX) proteins is not well established. Here, we used chemical and genetic tools on Brassica napus microspore-derived embryos and Arabidopsis thaliana zygotic embryos, and demonstrate that AUX1, LAX1 and LAX2 are required for both shoot and root pole formation, in concert with PIN efflux carriers. Furthermore, we uncovered a positive-feedback loop between MONOPTEROS (ARF5)-dependent auxin signalling and auxin transport. This MONOPTEROS-dependent transcriptional regulation of auxin influx (AUX1, LAX1 and LAX2) and auxin efflux (PIN1 and PIN4) carriers by MONOPTEROS helps to maintain proper auxin transport to the root tip. These results indicate that auxin-dependent cell specification during embryo development requires balanced auxin transport involving both influx and efflux mechanisms, and that this transport is maintained by a positive transcriptional feedback on auxin signalling.
- 650 _2
- $a Arabidopsis $x embryologie $x genetika $x metabolismus $7 D017360
- 650 _2
- $a biologický transport $x genetika $x fyziologie $7 D001692
- 650 _2
- $a Brassica napus $x embryologie $x genetika $x metabolismus $7 D029688
- 650 _2
- $a kyseliny indoloctové $x metabolismus $7 D007210
- 650 _2
- $a rostlinné proteiny $x metabolismus $7 D010940
- 650 _2
- $a semena rostlinná $x cytologie $x metabolismus $7 D012639
- 650 _2
- $a signální transdukce $x genetika $x fyziologie $7 D015398
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Grunewald, Wim $u Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB) and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium.
- 700 1_
- $a Sauer, Michael $u University of Potsdam, Institute of Biochemistry and Biology, D-14476 Potsdam, Germany Departamento Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain.
- 700 1_
- $a Cannoot, Bernard $u Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB) and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium.
- 700 1_
- $a Soriano, Mercedes $u Wageningen University and Research Centre, P.O. Box 619, 6700 AP Wageningen, The Netherlands.
- 700 1_
- $a Swarup, Ranjan $u School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK.
- 700 1_
- $a Weijers, Dolf $u Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands.
- 700 1_
- $a Bennett, Malcolm $u School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK.
- 700 1_
- $a Boutilier, Kim $u Wageningen University and Research Centre, P.O. Box 619, 6700 AP Wageningen, The Netherlands.
- 700 1_
- $a Friml, Jiří $u Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB) and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria jiri.friml@ist.ac.at.
- 773 0_
- $w MED00001363 $t Development (Cambridge, England) $x 1477-9129 $g Roč. 142, č. 4 (2015), s. 702-11
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25617434 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20150709 $b ABA008
- 991 __
- $a 20150731103754 $b ABA008
- 999 __
- $a ok $b bmc $g 1083190 $s 905844
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 142 $c 4 $d 702-11 $i 1477-9129 $m Development $n Development $x MED00001363
- LZP __
- $a Pubmed-20150709