-
Je něco špatně v tomto záznamu ?
Nonsense-mediated mRNA decay modulates immune receptor levels to regulate plant antibacterial defense
J. Gloggnitzer, S. Akimcheva, A. Srinivasan, B. Kusenda, N. Riehs, H. Stampfl, J. Bautor, B. Dekrout, C. Jonak, JM. Jiménez-Gómez, JE. Parker, K. Riha,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Cell Press Free Archives
od 2007-03-15 do Před 1 rokem
Free Medical Journals
od 2007 do Před 1 rokem
- MeSH
- Arabidopsis genetika imunologie mikrobiologie MeSH
- interakce hostitele a patogenu MeSH
- messenger RNA genetika imunologie MeSH
- nemoci rostlin genetika imunologie mikrobiologie MeSH
- nesmyslný kodon MeSH
- nonsense mediated mRNA decay * MeSH
- proteiny huseníčku genetika imunologie MeSH
- Pseudomonas syringae genetika fyziologie MeSH
- receptory imunologické genetika imunologie MeSH
- RNA-helikasy genetika imunologie MeSH
- transportní proteiny genetika imunologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Nonsense-mediated mRNA decay (NMD) is a conserved eukaryotic RNA surveillance mechanism that degrades aberrant mRNAs. NMD impairment in Arabidopsis is linked to constitutive immune response activation and enhanced antibacterial resistance, but the underlying mechanisms are unknown. Here we show that NMD contributes to innate immunity in Arabidopsis by controlling the turnover of numerous TIR domain-containing, nucleotide-binding, leucine-rich repeat (TNL) immune receptor-encoding mRNAs. Autoimmunity resulting from NMD impairment depends on TNL signaling pathway components and can be triggered through deregulation of a single TNL gene, RPS6. Bacterial infection of plants causes host-programmed inhibition of NMD, leading to stabilization of NMD-regulated TNL transcripts. Conversely, constitutive NMD activity prevents TNL stabilization and impairs plant defense, demonstrating that host-regulated NMD contributes to disease resistance. Thus, NMD shapes plant innate immunity by controlling the threshold for activation of TNL resistance pathways.
CEITEC Masaryk University Kamenice 753 5 625 00 Brno Czech Republic
Institut Jean Pierre Bourgin UMR1318 INRA AgroParisTech 78000 Versailles France
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15023038
- 003
- CZ-PrNML
- 005
- 20150730101036.0
- 007
- ta
- 008
- 150709s2014 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.chom.2014.08.010 $2 doi
- 035 __
- $a (PubMed)25211079
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Gloggnitzer, Jiradet $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 3, 1030 Vienna, Austria. Electronic address: jiradet.gloggnitzer@gmi.oeaw.ac.at.
- 245 10
- $a Nonsense-mediated mRNA decay modulates immune receptor levels to regulate plant antibacterial defense / $c J. Gloggnitzer, S. Akimcheva, A. Srinivasan, B. Kusenda, N. Riehs, H. Stampfl, J. Bautor, B. Dekrout, C. Jonak, JM. Jiménez-Gómez, JE. Parker, K. Riha,
- 520 9_
- $a Nonsense-mediated mRNA decay (NMD) is a conserved eukaryotic RNA surveillance mechanism that degrades aberrant mRNAs. NMD impairment in Arabidopsis is linked to constitutive immune response activation and enhanced antibacterial resistance, but the underlying mechanisms are unknown. Here we show that NMD contributes to innate immunity in Arabidopsis by controlling the turnover of numerous TIR domain-containing, nucleotide-binding, leucine-rich repeat (TNL) immune receptor-encoding mRNAs. Autoimmunity resulting from NMD impairment depends on TNL signaling pathway components and can be triggered through deregulation of a single TNL gene, RPS6. Bacterial infection of plants causes host-programmed inhibition of NMD, leading to stabilization of NMD-regulated TNL transcripts. Conversely, constitutive NMD activity prevents TNL stabilization and impairs plant defense, demonstrating that host-regulated NMD contributes to disease resistance. Thus, NMD shapes plant innate immunity by controlling the threshold for activation of TNL resistance pathways.
- 650 _2
- $a Arabidopsis $x genetika $x imunologie $x mikrobiologie $7 D017360
- 650 _2
- $a proteiny huseníčku $x genetika $x imunologie $7 D029681
- 650 _2
- $a transportní proteiny $x genetika $x imunologie $7 D002352
- 650 _2
- $a nesmyslný kodon $7 D018389
- 650 _2
- $a interakce hostitele a patogenu $7 D054884
- 650 12
- $a nonsense mediated mRNA decay $7 D059365
- 650 _2
- $a nemoci rostlin $x genetika $x imunologie $x mikrobiologie $7 D010935
- 650 _2
- $a Pseudomonas syringae $x genetika $x fyziologie $7 D044224
- 650 _2
- $a RNA-helikasy $x genetika $x imunologie $7 D020365
- 650 _2
- $a messenger RNA $x genetika $x imunologie $7 D012333
- 650 _2
- $a receptory imunologické $x genetika $x imunologie $7 D011971
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Akimcheva, Svetlana $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 3, 1030 Vienna, Austria. $7 gn_A_00002931
- 700 1_
- $a Srinivasan, Arunkumar $u Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
- 700 1_
- $a Kusenda, Branislav $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 3, 1030 Vienna, Austria.
- 700 1_
- $a Riehs, Nina $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 3, 1030 Vienna, Austria.
- 700 1_
- $a Stampfl, Hansjörg $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 3, 1030 Vienna, Austria.
- 700 1_
- $a Bautor, Jaqueline $u Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
- 700 1_
- $a Dekrout, Bettina $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 3, 1030 Vienna, Austria.
- 700 1_
- $a Jonak, Claudia $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 3, 1030 Vienna, Austria.
- 700 1_
- $a Jiménez-Gómez, José M $u Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany; Institut Jean-Pierre Bourgin, UMR1318, INRA-AgroParisTech, 78000 Versailles, France.
- 700 1_
- $a Parker, Jane E $u Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
- 700 1_
- $a Riha, Karel $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 3, 1030 Vienna, Austria; CEITEC, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic. Electronic address: karel.riha@ceitec.muni.cz.
- 773 0_
- $w MED00173236 $t Cell host & microbe $x 1934-6069 $g Roč. 16, č. 3 (2014), s. 376-90
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25211079 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20150709 $b ABA008
- 991 __
- $a 20150730101124 $b ABA008
- 999 __
- $a ok $b bmc $g 1083377 $s 906031
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 16 $c 3 $d 376-90 $i 1934-6069 $m Cell host & microbe $n Cell Host Microbe $x MED00173236
- LZP __
- $a Pubmed-20150709