• Je něco špatně v tomto záznamu ?

Fluorescence resonance energy transfer between green fluorescent protein and doxorubicin enabled by DNA nanotechnology

Z. Heger, M. Kominkova, N. Cernei, L. Krejcova, P. Kopel, O. Zitka, V. Adam, R. Kizek,

. 2014 ; 35 (23) : 3290-301.

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc15023112

DNA nanotechnology is a rapidly growing research area, where DNA may be used for wide range of applications such as construction of nanodevices serving for large scale of diverse purposes. Likewise a panel of various purified fluorescent proteins is investigated for their ability to emit their typical fluorescence spectra under influence of particular excitation. Hence these proteins may form ideal donor molecules for assembly of fluorescence resonance emission transfer (FRET) constructions. To extend the application possibilities of fluorescent proteins, while using DNA nanotechnology, we developed nanoconstruction comprising green fluorescent protein (GFP) bound onto surface of surface active nanomaghemite and functionalized with gold nanoparticles. We took advantage of natural affinity between gold and thiol moieties, which were modified to bind DNA fragment. Finally we enclosed doxorubicin into fullerene cages. Doxorubicin intercalated in DNA fragment bound on the particles and thus we were able to connect these parts together. Because GFP behaved as a donor and doxorubicin as an acceptor using excitation wavelength for GFP (395 nm) in emission wavelength of doxorubicin (590 nm) FRET was observed. This nanoconstruction may serve as a double-labeled transporter of doxorubicin guided by force of external magnetic force owing to the presence of nanomaghemite. Further nanomaghemite offers the possibility of using this technology for thermotherapy.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15023112
003      
CZ-PrNML
005      
20150730100301.0
007      
ta
008      
150709s2014 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1002/elps.201400166 $2 doi
035    __
$a (PubMed)25142019
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Heger, Zbynek $u Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic.
245    10
$a Fluorescence resonance energy transfer between green fluorescent protein and doxorubicin enabled by DNA nanotechnology / $c Z. Heger, M. Kominkova, N. Cernei, L. Krejcova, P. Kopel, O. Zitka, V. Adam, R. Kizek,
520    9_
$a DNA nanotechnology is a rapidly growing research area, where DNA may be used for wide range of applications such as construction of nanodevices serving for large scale of diverse purposes. Likewise a panel of various purified fluorescent proteins is investigated for their ability to emit their typical fluorescence spectra under influence of particular excitation. Hence these proteins may form ideal donor molecules for assembly of fluorescence resonance emission transfer (FRET) constructions. To extend the application possibilities of fluorescent proteins, while using DNA nanotechnology, we developed nanoconstruction comprising green fluorescent protein (GFP) bound onto surface of surface active nanomaghemite and functionalized with gold nanoparticles. We took advantage of natural affinity between gold and thiol moieties, which were modified to bind DNA fragment. Finally we enclosed doxorubicin into fullerene cages. Doxorubicin intercalated in DNA fragment bound on the particles and thus we were able to connect these parts together. Because GFP behaved as a donor and doxorubicin as an acceptor using excitation wavelength for GFP (395 nm) in emission wavelength of doxorubicin (590 nm) FRET was observed. This nanoconstruction may serve as a double-labeled transporter of doxorubicin guided by force of external magnetic force owing to the presence of nanomaghemite. Further nanomaghemite offers the possibility of using this technology for thermotherapy.
650    _2
$a DNA $x chemie $7 D004247
650    _2
$a doxorubicin $x chemie $7 D004317
650    _2
$a rezonanční přenos fluorescenční energie $x metody $7 D031541
650    _2
$a fullereny $7 D037741
650    _2
$a zelené fluorescenční proteiny $x chemie $7 D049452
650    _2
$a luminescentní proteiny $x chemie $7 D008164
650    _2
$a magnetické nanočástice $x chemie $7 D058185
650    _2
$a nanotechnologie $x metody $7 D036103
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kominkova, Marketa
700    1_
$a Cernei, Natalia
700    1_
$a Krejcova, Ludmila
700    1_
$a Kopel, Pavel
700    1_
$a Zitka, Ondrej
700    1_
$a Adam, Vojtěch $7 xx0064599
700    1_
$a Kizek, Rene
773    0_
$w MED00001508 $t Electrophoresis $x 1522-2683 $g Roč. 35, č. 23 (2014), s. 3290-301
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25142019 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20150709 $b ABA008
991    __
$a 20150730100349 $b ABA008
999    __
$a ok $b bmc $g 1083450 $s 906105
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 35 $c 23 $d 3290-301 $i 1522-2683 $m Electrophoresis $n Electrophoresis $x MED00001508
LZP    __
$a Pubmed-20150709

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...