-
Je něco špatně v tomto záznamu ?
CRE promoter sites modulate alternative splicing via p300-mediated histone acetylation
E. Dušková, J. Hnilicová, D. Staněk,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 2004 do Před 1 rokem
Freely Accessible Science Journals
od 2004
PubMed Central
od 2009 do Před 1 rokem
Europe PubMed Central
od 2009 do Před 1 rokem
PubMed
25019513
DOI
10.4161/rna.29441
Knihovny.cz E-zdroje
- MeSH
- acetylace MeSH
- alternativní sestřih * MeSH
- fibronektiny genetika metabolismus MeSH
- genový knockdown MeSH
- HeLa buňky MeSH
- histony metabolismus MeSH
- integrasy genetika MeSH
- lidé MeSH
- messenger RNA metabolismus MeSH
- promotorové oblasti (genetika) MeSH
- protein p300 asociovaný s E1A genetika metabolismus MeSH
- reportérové geny MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Histone acetylation modulates alternative splicing of several hundred genes. Here, we tested the role of the histone acetyltransferase p300 in alternative splicing and showed that knockdown of p300 promotes inclusion of the fibronectin (FN1) alternative EDB exon. p300 associates with CRE sites in the promoter via the CREB transcription factor. We created mini-gene reporters driven by an artificial promoter containing CRE sites. Both deletion and mutation of the CRE site affected EDB alternative splicing in the same manner as p300 knockdown. Next we showed that p300 controls histone H4 acetylation along the FN1 gene. Consistently, p300 depletion and CRE deletion/mutation both reduced histone H4 acetylation on mini-gene reporters. Finally, we provide evidence that the effect of CRE inactivation on H4 acetylation and alternative splicing is counteracted by the inhibition of histone deacetylases. Together, these data suggest that histone acetylation could be one of the mechanisms how promoter and promoter binding proteins influence alternative splicing.
Faculty of Science Charles University Prague Prague Czech Republic
Institute of Microbiology Academy of Sciences of the Czech Republic Prague Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15023262
- 003
- CZ-PrNML
- 005
- 20150728091806.0
- 007
- ta
- 008
- 150709s2014 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.4161/rna.29441 $2 doi
- 035 __
- $a (PubMed)25019513
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Dušková, Eva $u Department of RNA Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Faculty of Science, Charles University in Prague, Prague, Czech Republic.
- 245 10
- $a CRE promoter sites modulate alternative splicing via p300-mediated histone acetylation / $c E. Dušková, J. Hnilicová, D. Staněk,
- 520 9_
- $a Histone acetylation modulates alternative splicing of several hundred genes. Here, we tested the role of the histone acetyltransferase p300 in alternative splicing and showed that knockdown of p300 promotes inclusion of the fibronectin (FN1) alternative EDB exon. p300 associates with CRE sites in the promoter via the CREB transcription factor. We created mini-gene reporters driven by an artificial promoter containing CRE sites. Both deletion and mutation of the CRE site affected EDB alternative splicing in the same manner as p300 knockdown. Next we showed that p300 controls histone H4 acetylation along the FN1 gene. Consistently, p300 depletion and CRE deletion/mutation both reduced histone H4 acetylation on mini-gene reporters. Finally, we provide evidence that the effect of CRE inactivation on H4 acetylation and alternative splicing is counteracted by the inhibition of histone deacetylases. Together, these data suggest that histone acetylation could be one of the mechanisms how promoter and promoter binding proteins influence alternative splicing.
- 650 _2
- $a acetylace $7 D000107
- 650 12
- $a alternativní sestřih $7 D017398
- 650 _2
- $a protein p300 asociovaný s E1A $x genetika $x metabolismus $7 D050881
- 650 _2
- $a fibronektiny $x genetika $x metabolismus $7 D005353
- 650 _2
- $a genový knockdown $7 D055785
- 650 _2
- $a reportérové geny $7 D017930
- 650 _2
- $a HeLa buňky $7 D006367
- 650 _2
- $a histony $x metabolismus $7 D006657
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a integrasy $x genetika $7 D019426
- 650 _2
- $a promotorové oblasti (genetika) $7 D011401
- 650 _2
- $a messenger RNA $x metabolismus $7 D012333
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Hnilicová, Jarmila $u Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
- 700 1_
- $a Staněk, David $u Department of RNA Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
- 773 0_
- $w MED00181077 $t RNA biology $x 1555-8584 $g Roč. 11, č. 7 (2014), s. 865-74
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25019513 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20150709 $b ABA008
- 991 __
- $a 20150728091851 $b ABA008
- 999 __
- $a ok $b bmc $g 1083600 $s 906255
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 11 $c 7 $d 865-74 $i 1555-8584 $m RNA biology $n RNA Biol $x MED00181077
- LZP __
- $a Pubmed-20150709