• Something wrong with this record ?

Learning Markov Random Walks for robust subspace clustering and estimation

R. Liu, Z. Lin, Z. Su,

. 2014 ; 59 (-) : 1-15.

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

Markov Random Walks (MRW) has proven to be an effective way to understand spectral clustering and embedding. However, due to less global structural measure, conventional MRW (e.g., the Gaussian kernel MRW) cannot be applied to handle data points drawn from a mixture of subspaces. In this paper, we introduce a regularized MRW learning model, using a low-rank penalty to constrain the global subspace structure, for subspace clustering and estimation. In our framework, both the local pairwise similarity and the global subspace structure can be learnt from the transition probabilities of MRW. We prove that under some suitable conditions, our proposed local/global criteria can exactly capture the multiple subspace structure and learn a low-dimensional embedding for the data, in which giving the true segmentation of subspaces. To improve robustness in real situations, we also propose an extension of the MRW learning model based on integrating transition matrix learning and error correction in a unified framework. Experimental results on both synthetic data and real applications demonstrate that our proposed MRW learning model and its robust extension outperform the state-of-the-art subspace clustering methods.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15023270
003      
CZ-PrNML
005      
20150728094359.0
007      
ta
008      
150709s2014 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.neunet.2014.06.005 $2 doi
035    __
$a (PubMed)25005156
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Liu, Risheng $u Dalian University of Technology, Dalian, China. Electronic address: rsliu0705@gmail.com.
245    10
$a Learning Markov Random Walks for robust subspace clustering and estimation / $c R. Liu, Z. Lin, Z. Su,
520    9_
$a Markov Random Walks (MRW) has proven to be an effective way to understand spectral clustering and embedding. However, due to less global structural measure, conventional MRW (e.g., the Gaussian kernel MRW) cannot be applied to handle data points drawn from a mixture of subspaces. In this paper, we introduce a regularized MRW learning model, using a low-rank penalty to constrain the global subspace structure, for subspace clustering and estimation. In our framework, both the local pairwise similarity and the global subspace structure can be learnt from the transition probabilities of MRW. We prove that under some suitable conditions, our proposed local/global criteria can exactly capture the multiple subspace structure and learn a low-dimensional embedding for the data, in which giving the true segmentation of subspaces. To improve robustness in real situations, we also propose an extension of the MRW learning model based on integrating transition matrix learning and error correction in a unified framework. Experimental results on both synthetic data and real applications demonstrate that our proposed MRW learning model and its robust extension outperform the state-of-the-art subspace clustering methods.
650    _2
$a algoritmy $7 D000465
650    _2
$a zvířata $7 D000818
650    _2
$a umělá inteligence $7 D001185
650    _2
$a shluková analýza $7 D016000
650    _2
$a emoce $x fyziologie $7 D004644
650    _2
$a lidé $7 D006801
650    _2
$a učení $7 D007858
650    _2
$a limbický systém $x fyziologie $7 D008032
650    _2
$a modely neurologické $7 D008959
650    _2
$a teoretické modely $7 D008962
650    12
$a neuronové sítě $7 D016571
650    _2
$a rozpoznávání automatizované $x metody $7 D010363
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a Lin, Zhouchen $u Key Lab. of Machine Perception (MOE), School of EECS, Peking University, Beijing, China. Electronic address: zlin@pku.edu.cn.
700    1_
$a Su, Zhixun $u Dalian University of Technology, Dalian, China. Electronic address: zxsu@dlut.edu.cn.
773    0_
$w MED00011811 $t Neural networks the official journal of the International Neural Network Society $x 1879-2782 $g Roč. 59, č. - (2014), s. 1-15
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25005156 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20150709 $b ABA008
991    __
$a 20150728094441 $b ABA008
999    __
$a ok $b bmc $g 1083608 $s 906263
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 59 $c - $d 1-15 $i 1879-2782 $m Neural networks $n Neural Netw $x MED00011811
LZP    __
$a Pubmed-20150709

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...