-
Something wrong with this record ?
Learning Markov Random Walks for robust subspace clustering and estimation
R. Liu, Z. Lin, Z. Su,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
- MeSH
- Algorithms MeSH
- Emotions physiology MeSH
- Humans MeSH
- Limbic System physiology MeSH
- Models, Neurological MeSH
- Neural Networks, Computer * MeSH
- Pattern Recognition, Automated methods MeSH
- Cluster Analysis MeSH
- Models, Theoretical MeSH
- Learning MeSH
- Artificial Intelligence MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Markov Random Walks (MRW) has proven to be an effective way to understand spectral clustering and embedding. However, due to less global structural measure, conventional MRW (e.g., the Gaussian kernel MRW) cannot be applied to handle data points drawn from a mixture of subspaces. In this paper, we introduce a regularized MRW learning model, using a low-rank penalty to constrain the global subspace structure, for subspace clustering and estimation. In our framework, both the local pairwise similarity and the global subspace structure can be learnt from the transition probabilities of MRW. We prove that under some suitable conditions, our proposed local/global criteria can exactly capture the multiple subspace structure and learn a low-dimensional embedding for the data, in which giving the true segmentation of subspaces. To improve robustness in real situations, we also propose an extension of the MRW learning model based on integrating transition matrix learning and error correction in a unified framework. Experimental results on both synthetic data and real applications demonstrate that our proposed MRW learning model and its robust extension outperform the state-of-the-art subspace clustering methods.
Dalian University of Technology Dalian China
Key Lab of Machine Perception School of EECS Peking University Beijing China
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15023270
- 003
- CZ-PrNML
- 005
- 20150728094359.0
- 007
- ta
- 008
- 150709s2014 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.neunet.2014.06.005 $2 doi
- 035 __
- $a (PubMed)25005156
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Liu, Risheng $u Dalian University of Technology, Dalian, China. Electronic address: rsliu0705@gmail.com.
- 245 10
- $a Learning Markov Random Walks for robust subspace clustering and estimation / $c R. Liu, Z. Lin, Z. Su,
- 520 9_
- $a Markov Random Walks (MRW) has proven to be an effective way to understand spectral clustering and embedding. However, due to less global structural measure, conventional MRW (e.g., the Gaussian kernel MRW) cannot be applied to handle data points drawn from a mixture of subspaces. In this paper, we introduce a regularized MRW learning model, using a low-rank penalty to constrain the global subspace structure, for subspace clustering and estimation. In our framework, both the local pairwise similarity and the global subspace structure can be learnt from the transition probabilities of MRW. We prove that under some suitable conditions, our proposed local/global criteria can exactly capture the multiple subspace structure and learn a low-dimensional embedding for the data, in which giving the true segmentation of subspaces. To improve robustness in real situations, we also propose an extension of the MRW learning model based on integrating transition matrix learning and error correction in a unified framework. Experimental results on both synthetic data and real applications demonstrate that our proposed MRW learning model and its robust extension outperform the state-of-the-art subspace clustering methods.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a umělá inteligence $7 D001185
- 650 _2
- $a shluková analýza $7 D016000
- 650 _2
- $a emoce $x fyziologie $7 D004644
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a učení $7 D007858
- 650 _2
- $a limbický systém $x fyziologie $7 D008032
- 650 _2
- $a modely neurologické $7 D008959
- 650 _2
- $a teoretické modely $7 D008962
- 650 12
- $a neuronové sítě $7 D016571
- 650 _2
- $a rozpoznávání automatizované $x metody $7 D010363
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Lin, Zhouchen $u Key Lab. of Machine Perception (MOE), School of EECS, Peking University, Beijing, China. Electronic address: zlin@pku.edu.cn.
- 700 1_
- $a Su, Zhixun $u Dalian University of Technology, Dalian, China. Electronic address: zxsu@dlut.edu.cn.
- 773 0_
- $w MED00011811 $t Neural networks the official journal of the International Neural Network Society $x 1879-2782 $g Roč. 59, č. - (2014), s. 1-15
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25005156 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20150709 $b ABA008
- 991 __
- $a 20150728094441 $b ABA008
- 999 __
- $a ok $b bmc $g 1083608 $s 906263
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 59 $c - $d 1-15 $i 1879-2782 $m Neural networks $n Neural Netw $x MED00011811
- LZP __
- $a Pubmed-20150709