• Je něco špatně v tomto záznamu ?

Analysis of obstetricians' decision making on CTG recordings

J. Spilka, V. Chudáček, P. Janků, L. Hruban, M. Burša, M. Huptych, L. Zach, L. Lhotská,

. 2014 ; 51 (-) : 72-79.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc15023473

Grantová podpora
NT11124 MZ0 CEP - Centrální evidence projektů

Digitální knihovna NLK
Plný text - Článek
Zdroj

E-zdroje Online Plný text

NLK Free Medical Journals od 2001 do Před 1 rokem
Elsevier Open Access Journals od 2001-02-01 do Před 1 rokem
Elsevier Open Archive Journals od 2001-02-01 do Před 1 rokem

Interpretation of cardiotocogram (CTG) is a difficult task since its evaluation is complicated by a great inter- and intra-individual variability. Previous studies have predominantly analyzed clinicians' agreement on CTG evaluation based on quantitative measures (e.g. kappa coefficient) that do not offer any insight into clinical decision making. In this paper we aim to examine the agreement on evaluation in detail and provide data-driven analysis of clinical evaluation. For this study, nine obstetricians provided clinical evaluation of 634 CTG recordings (each ca. 60min long). We studied the agreement on evaluation and its dependence on the increasing number of clinicians involved in the final decision. We showed that despite of large number of clinicians the agreement on CTG evaluations is difficult to reach. The main reason is inherent inter- and intra-observer variability of CTG evaluation. Latent class model provides better and more natural way to aggregate the CTG evaluation than the majority voting especially for larger number of clinicians. Significant improvement was reached in particular for the pathological evaluation - giving a new insight into the process of CTG evaluation. Further, the analysis of latent class model revealed that clinicians unconsciously use four classes when evaluating CTG recordings, despite the fact that the clinical evaluation was based on FIGO guidelines where three classes are defined.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15023473
003      
CZ-PrNML
005      
20181008103527.0
007      
ta
008      
150709s2014 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jbi.2014.04.010 $2 doi
035    __
$a (PubMed)24747355
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Spilka, Jiří $u Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic. Electronic address: spilka.jiri@fel.cvut.cz.
245    10
$a Analysis of obstetricians' decision making on CTG recordings / $c J. Spilka, V. Chudáček, P. Janků, L. Hruban, M. Burša, M. Huptych, L. Zach, L. Lhotská,
520    9_
$a Interpretation of cardiotocogram (CTG) is a difficult task since its evaluation is complicated by a great inter- and intra-individual variability. Previous studies have predominantly analyzed clinicians' agreement on CTG evaluation based on quantitative measures (e.g. kappa coefficient) that do not offer any insight into clinical decision making. In this paper we aim to examine the agreement on evaluation in detail and provide data-driven analysis of clinical evaluation. For this study, nine obstetricians provided clinical evaluation of 634 CTG recordings (each ca. 60min long). We studied the agreement on evaluation and its dependence on the increasing number of clinicians involved in the final decision. We showed that despite of large number of clinicians the agreement on CTG evaluations is difficult to reach. The main reason is inherent inter- and intra-observer variability of CTG evaluation. Latent class model provides better and more natural way to aggregate the CTG evaluation than the majority voting especially for larger number of clinicians. Significant improvement was reached in particular for the pathological evaluation - giving a new insight into the process of CTG evaluation. Further, the analysis of latent class model revealed that clinicians unconsciously use four classes when evaluating CTG recordings, despite the fact that the clinical evaluation was based on FIGO guidelines where three classes are defined.
650    12
$a umělá inteligence $7 D001185
650    _2
$a kardiotokografie $x statistika a číselné údaje $7 D015148
650    12
$a systémy pro podporu klinického rozhodování $7 D020000
650    12
$a metody pro podporu rozhodování $7 D003661
650    _2
$a lidé $7 D006801
650    _2
$a odchylka pozorovatele $7 D015588
650    _2
$a porodnictví $x statistika a číselné údaje $7 D009774
650    _2
$a rozpoznávání automatizované $x metody $7 D010363
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a senzitivita a specificita $7 D012680
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Chudáček, Václav $u Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic.
700    1_
$a Janků, Petr $u Department of Gynecology and Obstetrics, Teaching Hospital of Masaryk University in Brno, Czech Republic.
700    1_
$a Hruban, Lukáš $u Department of Gynecology and Obstetrics, Teaching Hospital of Masaryk University in Brno, Czech Republic.
700    1_
$a Burša, Miroslav $u Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic.
700    1_
$a Huptych, Michal $u Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic.
700    1_
$a Zach, Lukáš $u Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic.
700    1_
$a Lhotská, Lenka $u Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic.
773    0_
$w MED00006571 $t Journal of biomedical informatics $x 1532-0480 $g Roč. 51, č. - (2014), s. 72-79
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24747355 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20150709 $b ABA008
991    __
$a 20181008104013 $b ABA008
999    __
$a ok $b bmc $g 1083810 $s 906466
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 51 $c - $d 72-79 $i 1532-0480 $m Journal of biomedical informatics $n J Biomed Inform $x MED00006571
GRA    __
$a NT11124 $p MZ0
LZP    __
$a Pubmed-20150709

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...