Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7

R. Končitíková, A. Vigouroux, M. Kopečná, T. Andree, J. Bartoš, M. Šebela, S. Moréra, D. Kopečný,

. 2015 ; 468 (1) : 109-23.

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc15031445

Aldehyde dehydrogenases (ALDHs) are responsible for oxidation of biogenic aldehyde intermediates as well as for cell detoxification of aldehydes generated during lipid peroxidation. So far, 13 ALDH families have been described in plants. In the present study, we provide a detailed biochemical characterization of plant ALDH2 and ALDH7 families by analysing maize and pea ALDH7 (ZmALDH7 and PsALDH7) and four maize cytosolic ALDH(cALDH)2 isoforms RF2C, RF2D, RF2E and RF2F [the first maize ALDH2 was discovered as a fertility restorer (RF2A)]. We report the crystal structures of ZmALDH7, RF2C and RF2F at high resolution. The ZmALDH7 structure shows that the three conserved residues Glu(120), Arg(300) and Thr(302) in the ALDH7 family are located in the substrate-binding site and are specific to this family. Our kinetic analysis demonstrates that α-aminoadipic semialdehyde, a lysine catabolism intermediate, is the preferred substrate for plant ALDH7. In contrast, aromatic aldehydes including benzaldehyde, anisaldehyde, cinnamaldehyde, coniferaldehyde and sinapaldehyde are the best substrates for cALDH2. In line with these results, the crystal structures of RF2C and RF2F reveal that their substrate-binding sites are similar and are formed by an aromatic cluster mainly composed of phenylalanine residues and several nonpolar residues. Gene expression studies indicate that the RF2C gene, which is strongly expressed in all organs, appears essential, suggesting that the crucial role of the enzyme would certainly be linked to the cell wall formation using aldehydes from phenylpropanoid pathway as substrates. Finally, plant ALDH7 may significantly contribute to osmoprotection because it oxidizes several aminoaldehydes leading to products known as osmolytes.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15031445
003      
CZ-PrNML
005      
20151014122105.0
007      
ta
008      
151005s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1042/BJ20150009 $2 doi
035    __
$a (PubMed)25734422
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Končitíková, Radka $u *Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic.
245    10
$a Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7 / $c R. Končitíková, A. Vigouroux, M. Kopečná, T. Andree, J. Bartoš, M. Šebela, S. Moréra, D. Kopečný,
520    9_
$a Aldehyde dehydrogenases (ALDHs) are responsible for oxidation of biogenic aldehyde intermediates as well as for cell detoxification of aldehydes generated during lipid peroxidation. So far, 13 ALDH families have been described in plants. In the present study, we provide a detailed biochemical characterization of plant ALDH2 and ALDH7 families by analysing maize and pea ALDH7 (ZmALDH7 and PsALDH7) and four maize cytosolic ALDH(cALDH)2 isoforms RF2C, RF2D, RF2E and RF2F [the first maize ALDH2 was discovered as a fertility restorer (RF2A)]. We report the crystal structures of ZmALDH7, RF2C and RF2F at high resolution. The ZmALDH7 structure shows that the three conserved residues Glu(120), Arg(300) and Thr(302) in the ALDH7 family are located in the substrate-binding site and are specific to this family. Our kinetic analysis demonstrates that α-aminoadipic semialdehyde, a lysine catabolism intermediate, is the preferred substrate for plant ALDH7. In contrast, aromatic aldehydes including benzaldehyde, anisaldehyde, cinnamaldehyde, coniferaldehyde and sinapaldehyde are the best substrates for cALDH2. In line with these results, the crystal structures of RF2C and RF2F reveal that their substrate-binding sites are similar and are formed by an aromatic cluster mainly composed of phenylalanine residues and several nonpolar residues. Gene expression studies indicate that the RF2C gene, which is strongly expressed in all organs, appears essential, suggesting that the crucial role of the enzyme would certainly be linked to the cell wall formation using aldehydes from phenylpropanoid pathway as substrates. Finally, plant ALDH7 may significantly contribute to osmoprotection because it oxidizes several aminoaldehydes leading to products known as osmolytes.
650    _2
$a aldehyddehydrogenasa $x chemie $x genetika $x metabolismus $7 D000444
650    _2
$a sekvence aminokyselin $7 D000595
650    _2
$a katalytická doména $x genetika $7 D020134
650    _2
$a krystalografie rentgenová $7 D018360
650    _2
$a stanovení celkové genové exprese $7 D020869
650    _2
$a izoenzymy $x chemie $x genetika $x metabolismus $7 D007527
650    _2
$a kinetika $7 D007700
650    _2
$a modely genetické $7 D008957
650    _2
$a molekulární modely $7 D008958
650    _2
$a molekulární sekvence - údaje $7 D008969
650    _2
$a NAD $x metabolismus $7 D009243
650    _2
$a hrách setý $x enzymologie $x genetika $7 D018532
650    _2
$a fylogeneze $7 D010802
650    _2
$a rostlinné proteiny $x chemie $x genetika $x metabolismus $7 D010940
650    _2
$a rostliny $x enzymologie $x genetika $7 D010944
650    _2
$a substrátová specifita $7 D013379
650    _2
$a kukuřice setá $x enzymologie $x genetika $7 D003313
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Vigouroux, Armelle $u ‡Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, Gif-sur-Yvette 91198, France.
700    1_
$a Kopečná, Martina $u *Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic.
700    1_
$a Andree, Tomáš $u †Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic. $7 gn_A_00006428
700    1_
$a Bartoš, Jan $u §Centre of Plant Structural and Functional Genomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, Olomouc CZ-78371, Czech Republic.
700    1_
$a Šebela, Marek $u *Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic.
700    1_
$a Moréra, Solange $u ‡Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, Gif-sur-Yvette 91198, France.
700    1_
$a Kopečný, David $u *Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic.
773    0_
$w MED00158769 $t The Biochemical journal $x 1470-8728 $g Roč. 468, č. 1 (2015), s. 109-23
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25734422 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20151005 $b ABA008
991    __
$a 20151014122253 $b ABA008
999    __
$a ok $b bmc $g 1092321 $s 914571
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 468 $c 1 $d 109-23 $i 1470-8728 $m Biochemical journal (London. 1984) $n Biochem J $x MED00009308
LZP    __
$a Pubmed-20151005

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...