• Je něco špatně v tomto záznamu ?

Computational study of β-N-acetylhexosaminidase from Talaromyces flavus, a glycosidase with high substrate flexibility

N. Kulik, K. Slámová, R. Ettrich, V. Křen,

. 2015 ; 16 (-) : 28. [pub] 20150128

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc15031485

BACKGROUND: β-N-Acetylhexosaminidase (GH20) from the filamentous fungus Talaromyces flavus, previously identified as a prominent enzyme in the biosynthesis of modified glycosides, lacks a high resolution three-dimensional structure so far. Despite of high sequence identity to previously reported Aspergillus oryzae and Penicilluim oxalicum β-N-acetylhexosaminidases, this enzyme tolerates significantly better substrate modification. Understanding of key structural features, prediction of effective mutants and potential substrate characteristics prior to their synthesis are of general interest. RESULTS: Computational methods including homology modeling and molecular dynamics simulations were applied to shad light on the structure-activity relationship in the enzyme. Primary sequence analysis revealed some variable regions able to influence difference in substrate affinity of hexosaminidases. Moreover, docking in combination with consequent molecular dynamics simulations of C-6 modified glycosides enabled us to identify the structural features required for accommodation and processing of these bulky substrates in the active site of hexosaminidase from T. flavus. To access the reliability of predictions on basis of the reported model, all results were confronted with available experimental data that demonstrated the principal correctness of the predictions as well as the model. CONCLUSIONS: The main variable regions in β-N-acetylhexosaminidases determining difference in modified substrate affinity are located close to the active site entrance and engage two loops. Differences in primary sequence and the spatial arrangement of these loops and their interplay with active site amino acids, reflected by interaction energies and dynamics, account for the different catalytic activity and substrate specificity of the various fungal and bacterial β-N-acetylhexosaminidases.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15031485
003      
CZ-PrNML
005      
20151008115804.0
007      
ta
008      
151005s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12859-015-0465-8 $2 doi
035    __
$a (PubMed)25627923
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Kulik, Natallia $u Department of Structure and Function of Proteins, Institute of Nanobiology and Structural Biology of GCRC, Academy of Sciences of the Czech Republic, Zamek 136, 37333, Nove Hrady, Czech Republic. kulik@nh.cas.cz.
245    10
$a Computational study of β-N-acetylhexosaminidase from Talaromyces flavus, a glycosidase with high substrate flexibility / $c N. Kulik, K. Slámová, R. Ettrich, V. Křen,
520    9_
$a BACKGROUND: β-N-Acetylhexosaminidase (GH20) from the filamentous fungus Talaromyces flavus, previously identified as a prominent enzyme in the biosynthesis of modified glycosides, lacks a high resolution three-dimensional structure so far. Despite of high sequence identity to previously reported Aspergillus oryzae and Penicilluim oxalicum β-N-acetylhexosaminidases, this enzyme tolerates significantly better substrate modification. Understanding of key structural features, prediction of effective mutants and potential substrate characteristics prior to their synthesis are of general interest. RESULTS: Computational methods including homology modeling and molecular dynamics simulations were applied to shad light on the structure-activity relationship in the enzyme. Primary sequence analysis revealed some variable regions able to influence difference in substrate affinity of hexosaminidases. Moreover, docking in combination with consequent molecular dynamics simulations of C-6 modified glycosides enabled us to identify the structural features required for accommodation and processing of these bulky substrates in the active site of hexosaminidase from T. flavus. To access the reliability of predictions on basis of the reported model, all results were confronted with available experimental data that demonstrated the principal correctness of the predictions as well as the model. CONCLUSIONS: The main variable regions in β-N-acetylhexosaminidases determining difference in modified substrate affinity are located close to the active site entrance and engage two loops. Differences in primary sequence and the spatial arrangement of these loops and their interplay with active site amino acids, reflected by interaction energies and dynamics, account for the different catalytic activity and substrate specificity of the various fungal and bacterial β-N-acetylhexosaminidases.
650    _2
$a sekvence aminokyselin $7 D000595
650    _2
$a katalytická doména $7 D020134
650    12
$a výpočetní biologie $7 D019295
650    _2
$a glykosylace $7 D006031
650    _2
$a kinetika $7 D007700
650    _2
$a molekulární modely $7 D008958
650    _2
$a simulace molekulární dynamiky $7 D056004
650    _2
$a molekulární sekvence - údaje $7 D008969
650    _2
$a fylogeneze $7 D010802
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a sekvenční homologie aminokyselin $7 D017386
650    _2
$a vztahy mezi strukturou a aktivitou $7 D013329
650    _2
$a substrátová specifita $7 D013379
650    _2
$a Talaromyces $x enzymologie $7 D032901
650    _2
$a beta-N-acetylhexosaminidasy $x chemie $x metabolismus $7 D001619
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Slámová, Kristýna $u Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 14220, Praha 4, Czech Republic. slamova.kristyna@gmail.com.
700    1_
$a Ettrich, Rüdiger $u Department of Structure and Function of Proteins, Institute of Nanobiology and Structural Biology of GCRC, Academy of Sciences of the Czech Republic, Zamek 136, 37333, Nove Hrady, Czech Republic. ettrich@nh.cas.cz. Faculty of Sciences, University of South Bohemia in Ceske Budejovice, Zamek 136, 37333, Nove Hrady, Czech Republic. ettrich@nh.cas.cz.
700    1_
$a Křen, Vladimír $u Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 14220, Praha 4, Czech Republic. kren@biomed.cas.cz.
773    0_
$w MED00008167 $t BMC bioinformatics $x 1471-2105 $g Roč. 16, č. - (2015), s. 28
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25627923 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20151005 $b ABA008
991    __
$a 20151008115951 $b ABA008
999    __
$a ok $b bmc $g 1092361 $s 914611
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 16 $c - $d 28 $e 20150128 $i 1471-2105 $m BMC bioinformatics $n BMC Bioinformatics $x MED00008167
LZP    __
$a Pubmed-20151005

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace