-
Je něco špatně v tomto záznamu ?
Consequences of a deficit in vitamin B6 biosynthesis de novo for hormone homeostasis and root development in Arabidopsis
S. Boycheva, A. Dominguez, J. Rolcik, T. Boller, TB. Fitzpatrick,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1926 do Před 1 rokem
Open Access Digital Library
od 1926-01-01
PubMed
25475669
DOI
10.1104/pp.114.247767
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis růst a vývoj metabolismus fyziologie MeSH
- fenotyp MeSH
- homeostáza fyziologie MeSH
- kořeny rostlin růst a vývoj MeSH
- kyseliny indoloctové metabolismus MeSH
- proteiny huseníčku metabolismus fyziologie MeSH
- regulátory růstu rostlin metabolismus fyziologie MeSH
- transferasy dusíkatých skupin metabolismus fyziologie MeSH
- vitamin B6 biosyntéza fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Vitamin B(6) (pyridoxal 5'-phosphate) is an essential cofactor of many metabolic enzymes. Plants biosynthesize the vitamin de novo employing two enzymes, pyridoxine synthase1 (PDX1) and PDX2. In Arabidopsis (Arabidopsis thaliana), there are two catalytically active paralogs of PDX1 (PDX1.1 and PDX1.3) producing the vitamin at comparable rates. Since single mutants are viable but the pdx1.1 pdx1.3 double mutant is lethal, the corresponding enzymes seem redundant. However, the single mutants exhibit substantial phenotypic differences, particularly at the level of root development, with pdx1.3 being more impaired than pdx1.1. Here, we investigate the differential regulation of PDX1.1 and PDX1.3 by identifying factors involved in their disparate phenotypes. Swapped-promoter experiments clarify the presence of distinct regulatory elements in the upstream regions of both genes. Exogenous sucrose (Suc) triggers impaired ethylene production in both mutants but is more severe in pdx1.3 than in pdx1.1. Interestingly, Suc specifically represses PDX1.1 expression, accounting for the stronger vitamin B6 deficit in pdx1.3 compared with pdx1.1. Surprisingly, Suc enhances auxin levels in pdx1.1, whereas the levels are diminished in pdx1.3. In the case of pdx1.3, the previously reported reduced meristem activity combined with the impaired ethylene and auxin levels manifest the specific root developmental defects. Moreover, it is the deficit in ethylene production and/or signaling that triggers this outcome. On the other hand, we hypothesize that it is the increased auxin content of pdx1.1 that is responsible for the root developmental defects observed therein. We conclude that PDX1.1 and PDX1.3 play partially nonredundant roles and are differentially regulated as manifested in disparate root growth impairment morphologies.
Department of Botany and Plant Biology University of Geneva 1211 Geneva Switzerland
Institute of Botany University of Basel 4056 Basel Switzerland
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15031622
- 003
- CZ-PrNML
- 005
- 20151014110631.0
- 007
- ta
- 008
- 151005s2015 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1104/pp.114.247767 $2 doi
- 035 __
- $a (PubMed)25475669
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Boycheva, Svetlana $u Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (S.B., T.B.F.);Institute of Botany, University of Basel, 4056 Basel, Switzerland (A.D., T.B.); andLaboratory of Growth Regulators, Palacky University, and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic (J.R.).
- 245 10
- $a Consequences of a deficit in vitamin B6 biosynthesis de novo for hormone homeostasis and root development in Arabidopsis / $c S. Boycheva, A. Dominguez, J. Rolcik, T. Boller, TB. Fitzpatrick,
- 520 9_
- $a Vitamin B(6) (pyridoxal 5'-phosphate) is an essential cofactor of many metabolic enzymes. Plants biosynthesize the vitamin de novo employing two enzymes, pyridoxine synthase1 (PDX1) and PDX2. In Arabidopsis (Arabidopsis thaliana), there are two catalytically active paralogs of PDX1 (PDX1.1 and PDX1.3) producing the vitamin at comparable rates. Since single mutants are viable but the pdx1.1 pdx1.3 double mutant is lethal, the corresponding enzymes seem redundant. However, the single mutants exhibit substantial phenotypic differences, particularly at the level of root development, with pdx1.3 being more impaired than pdx1.1. Here, we investigate the differential regulation of PDX1.1 and PDX1.3 by identifying factors involved in their disparate phenotypes. Swapped-promoter experiments clarify the presence of distinct regulatory elements in the upstream regions of both genes. Exogenous sucrose (Suc) triggers impaired ethylene production in both mutants but is more severe in pdx1.3 than in pdx1.1. Interestingly, Suc specifically represses PDX1.1 expression, accounting for the stronger vitamin B6 deficit in pdx1.3 compared with pdx1.1. Surprisingly, Suc enhances auxin levels in pdx1.1, whereas the levels are diminished in pdx1.3. In the case of pdx1.3, the previously reported reduced meristem activity combined with the impaired ethylene and auxin levels manifest the specific root developmental defects. Moreover, it is the deficit in ethylene production and/or signaling that triggers this outcome. On the other hand, we hypothesize that it is the increased auxin content of pdx1.1 that is responsible for the root developmental defects observed therein. We conclude that PDX1.1 and PDX1.3 play partially nonredundant roles and are differentially regulated as manifested in disparate root growth impairment morphologies.
- 650 _2
- $a Arabidopsis $x růst a vývoj $x metabolismus $x fyziologie $7 D017360
- 650 _2
- $a proteiny huseníčku $x metabolismus $x fyziologie $7 D029681
- 650 _2
- $a homeostáza $x fyziologie $7 D006706
- 650 _2
- $a kyseliny indoloctové $x metabolismus $7 D007210
- 650 _2
- $a transferasy dusíkatých skupin $x metabolismus $x fyziologie $7 D019884
- 650 _2
- $a fenotyp $7 D010641
- 650 _2
- $a regulátory růstu rostlin $x metabolismus $x fyziologie $7 D010937
- 650 _2
- $a kořeny rostlin $x růst a vývoj $7 D018517
- 650 _2
- $a vitamin B6 $x biosyntéza $x fyziologie $7 D025101
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Dominguez, Ana $u Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (S.B., T.B.F.);Institute of Botany, University of Basel, 4056 Basel, Switzerland (A.D., T.B.); andLaboratory of Growth Regulators, Palacky University, and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic (J.R.).
- 700 1_
- $a Rolcik, Jakub $u Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (S.B., T.B.F.);Institute of Botany, University of Basel, 4056 Basel, Switzerland (A.D., T.B.); andLaboratory of Growth Regulators, Palacky University, and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic (J.R.).
- 700 1_
- $a Boller, Thomas $u Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (S.B., T.B.F.);Institute of Botany, University of Basel, 4056 Basel, Switzerland (A.D., T.B.); andLaboratory of Growth Regulators, Palacky University, and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic (J.R.).
- 700 1_
- $a Fitzpatrick, Teresa B $u Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (S.B., T.B.F.);Institute of Botany, University of Basel, 4056 Basel, Switzerland (A.D., T.B.); andLaboratory of Growth Regulators, Palacky University, and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic (J.R.) theresa.fitzpatrick@unige.ch.
- 773 0_
- $w MED00005317 $t Plant physiology $x 1532-2548 $g Roč. 167, č. 1 (2015), s. 102-17
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25475669 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20151005 $b ABA008
- 991 __
- $a 20151014110821 $b ABA008
- 999 __
- $a ok $b bmc $g 1092498 $s 914748
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 167 $c 1 $d 102-17 $e 20141204 $i 1532-2548 $m Plant physiology $n Plant Physiol $x MED00005317
- LZP __
- $a Pubmed-20151005