• Je něco špatně v tomto záznamu ?

Consequences of a deficit in vitamin B6 biosynthesis de novo for hormone homeostasis and root development in Arabidopsis

S. Boycheva, A. Dominguez, J. Rolcik, T. Boller, TB. Fitzpatrick,

. 2015 ; 167 (1) : 102-17. [pub] 20141204

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc15031622

Vitamin B(6) (pyridoxal 5'-phosphate) is an essential cofactor of many metabolic enzymes. Plants biosynthesize the vitamin de novo employing two enzymes, pyridoxine synthase1 (PDX1) and PDX2. In Arabidopsis (Arabidopsis thaliana), there are two catalytically active paralogs of PDX1 (PDX1.1 and PDX1.3) producing the vitamin at comparable rates. Since single mutants are viable but the pdx1.1 pdx1.3 double mutant is lethal, the corresponding enzymes seem redundant. However, the single mutants exhibit substantial phenotypic differences, particularly at the level of root development, with pdx1.3 being more impaired than pdx1.1. Here, we investigate the differential regulation of PDX1.1 and PDX1.3 by identifying factors involved in their disparate phenotypes. Swapped-promoter experiments clarify the presence of distinct regulatory elements in the upstream regions of both genes. Exogenous sucrose (Suc) triggers impaired ethylene production in both mutants but is more severe in pdx1.3 than in pdx1.1. Interestingly, Suc specifically represses PDX1.1 expression, accounting for the stronger vitamin B6 deficit in pdx1.3 compared with pdx1.1. Surprisingly, Suc enhances auxin levels in pdx1.1, whereas the levels are diminished in pdx1.3. In the case of pdx1.3, the previously reported reduced meristem activity combined with the impaired ethylene and auxin levels manifest the specific root developmental defects. Moreover, it is the deficit in ethylene production and/or signaling that triggers this outcome. On the other hand, we hypothesize that it is the increased auxin content of pdx1.1 that is responsible for the root developmental defects observed therein. We conclude that PDX1.1 and PDX1.3 play partially nonredundant roles and are differentially regulated as manifested in disparate root growth impairment morphologies.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15031622
003      
CZ-PrNML
005      
20151014110631.0
007      
ta
008      
151005s2015 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1104/pp.114.247767 $2 doi
035    __
$a (PubMed)25475669
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Boycheva, Svetlana $u Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (S.B., T.B.F.);Institute of Botany, University of Basel, 4056 Basel, Switzerland (A.D., T.B.); andLaboratory of Growth Regulators, Palacky University, and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic (J.R.).
245    10
$a Consequences of a deficit in vitamin B6 biosynthesis de novo for hormone homeostasis and root development in Arabidopsis / $c S. Boycheva, A. Dominguez, J. Rolcik, T. Boller, TB. Fitzpatrick,
520    9_
$a Vitamin B(6) (pyridoxal 5'-phosphate) is an essential cofactor of many metabolic enzymes. Plants biosynthesize the vitamin de novo employing two enzymes, pyridoxine synthase1 (PDX1) and PDX2. In Arabidopsis (Arabidopsis thaliana), there are two catalytically active paralogs of PDX1 (PDX1.1 and PDX1.3) producing the vitamin at comparable rates. Since single mutants are viable but the pdx1.1 pdx1.3 double mutant is lethal, the corresponding enzymes seem redundant. However, the single mutants exhibit substantial phenotypic differences, particularly at the level of root development, with pdx1.3 being more impaired than pdx1.1. Here, we investigate the differential regulation of PDX1.1 and PDX1.3 by identifying factors involved in their disparate phenotypes. Swapped-promoter experiments clarify the presence of distinct regulatory elements in the upstream regions of both genes. Exogenous sucrose (Suc) triggers impaired ethylene production in both mutants but is more severe in pdx1.3 than in pdx1.1. Interestingly, Suc specifically represses PDX1.1 expression, accounting for the stronger vitamin B6 deficit in pdx1.3 compared with pdx1.1. Surprisingly, Suc enhances auxin levels in pdx1.1, whereas the levels are diminished in pdx1.3. In the case of pdx1.3, the previously reported reduced meristem activity combined with the impaired ethylene and auxin levels manifest the specific root developmental defects. Moreover, it is the deficit in ethylene production and/or signaling that triggers this outcome. On the other hand, we hypothesize that it is the increased auxin content of pdx1.1 that is responsible for the root developmental defects observed therein. We conclude that PDX1.1 and PDX1.3 play partially nonredundant roles and are differentially regulated as manifested in disparate root growth impairment morphologies.
650    _2
$a Arabidopsis $x růst a vývoj $x metabolismus $x fyziologie $7 D017360
650    _2
$a proteiny huseníčku $x metabolismus $x fyziologie $7 D029681
650    _2
$a homeostáza $x fyziologie $7 D006706
650    _2
$a kyseliny indoloctové $x metabolismus $7 D007210
650    _2
$a transferasy dusíkatých skupin $x metabolismus $x fyziologie $7 D019884
650    _2
$a fenotyp $7 D010641
650    _2
$a regulátory růstu rostlin $x metabolismus $x fyziologie $7 D010937
650    _2
$a kořeny rostlin $x růst a vývoj $7 D018517
650    _2
$a vitamin B6 $x biosyntéza $x fyziologie $7 D025101
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Dominguez, Ana $u Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (S.B., T.B.F.);Institute of Botany, University of Basel, 4056 Basel, Switzerland (A.D., T.B.); andLaboratory of Growth Regulators, Palacky University, and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic (J.R.).
700    1_
$a Rolcik, Jakub $u Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (S.B., T.B.F.);Institute of Botany, University of Basel, 4056 Basel, Switzerland (A.D., T.B.); andLaboratory of Growth Regulators, Palacky University, and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic (J.R.).
700    1_
$a Boller, Thomas $u Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (S.B., T.B.F.);Institute of Botany, University of Basel, 4056 Basel, Switzerland (A.D., T.B.); andLaboratory of Growth Regulators, Palacky University, and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic (J.R.).
700    1_
$a Fitzpatrick, Teresa B $u Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (S.B., T.B.F.);Institute of Botany, University of Basel, 4056 Basel, Switzerland (A.D., T.B.); andLaboratory of Growth Regulators, Palacky University, and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic (J.R.) theresa.fitzpatrick@unige.ch.
773    0_
$w MED00005317 $t Plant physiology $x 1532-2548 $g Roč. 167, č. 1 (2015), s. 102-17
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25475669 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20151005 $b ABA008
991    __
$a 20151014110821 $b ABA008
999    __
$a ok $b bmc $g 1092498 $s 914748
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 167 $c 1 $d 102-17 $e 20141204 $i 1532-2548 $m Plant physiology $n Plant Physiol $x MED00005317
LZP    __
$a Pubmed-20151005

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...