-
Something wrong with this record ?
A high-throughput siRNA screen identifies genes that regulate mannose 6-phosphate receptor trafficking
M. Anitei, R. Chenna, C. Czupalla, M. Esner, S. Christ, S. Lenhard, K. Korn, F. Meyenhofer, M. Bickle, M. Zerial, B. Hoflack,
Language English Country England, Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't, Video-Audio Media
NLK
Free Medical Journals
from 1966 to 6 months ago
Open Access Digital Library
from 1853-01-01
Open Access Digital Library
from 1853-01-01
PubMed
25278553
DOI
10.1242/jcs.159608
Knihovny.cz E-resources
- MeSH
- ADP-Ribosylation Factor 1 genetics metabolism MeSH
- Cell Membrane enzymology MeSH
- Endosomes enzymology MeSH
- Phosphatidylinositol Phosphates metabolism MeSH
- Gene Regulatory Networks MeSH
- HeLa Cells MeSH
- Humans MeSH
- Protein Interaction Maps MeSH
- rac1 GTP-Binding Protein genetics metabolism MeSH
- Receptor, IGF Type 2 genetics metabolism MeSH
- Gene Expression Regulation, Enzymologic MeSH
- RNA Interference * MeSH
- Cluster Analysis MeSH
- Signal Transduction MeSH
- src-Family Kinases genetics metabolism MeSH
- trans-Golgi Network enzymology MeSH
- Transfection MeSH
- Protein Transport genetics MeSH
- High-Throughput Nucleotide Sequencing methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Video-Audio Media MeSH
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The delivery of newly synthesized soluble lysosomal hydrolases to the endosomal system is essential for lysosome function and cell homeostasis. This process relies on the proper trafficking of the mannose 6-phosphate receptors (MPRs) between the trans-Golgi network (TGN), endosomes and the plasma membrane. Many transmembrane proteins regulating diverse biological processes ranging from virus production to the development of multicellular organisms also use these pathways. To explore how cell signaling modulates MPR trafficking, we used high-throughput RNA interference (RNAi) to target the human kinome and phosphatome. Using high-content image analysis, we identified 127 kinases and phosphatases belonging to different signaling networks that regulate MPR trafficking and/or the dynamic states of the subcellular compartments encountered by the MPRs. Our analysis maps the MPR trafficking pathways based on enzymes regulating phosphatidylinositol phosphate metabolism. Furthermore, it reveals how cell signaling controls the biogenesis of post-Golgi tubular carriers destined to enter the endosomal system through a SRC-dependent pathway regulating ARF1 and RAC1 signaling and myosin II activity.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15031816
- 003
- CZ-PrNML
- 005
- 20151013110031.0
- 007
- ta
- 008
- 151005s2014 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1242/jcs.159608 $2 doi
- 035 __
- $a (PubMed)25278553
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Anitei, Mihaela $u Biotechnology Center, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany. $7 gn_A_00007075
- 245 12
- $a A high-throughput siRNA screen identifies genes that regulate mannose 6-phosphate receptor trafficking / $c M. Anitei, R. Chenna, C. Czupalla, M. Esner, S. Christ, S. Lenhard, K. Korn, F. Meyenhofer, M. Bickle, M. Zerial, B. Hoflack,
- 520 9_
- $a The delivery of newly synthesized soluble lysosomal hydrolases to the endosomal system is essential for lysosome function and cell homeostasis. This process relies on the proper trafficking of the mannose 6-phosphate receptors (MPRs) between the trans-Golgi network (TGN), endosomes and the plasma membrane. Many transmembrane proteins regulating diverse biological processes ranging from virus production to the development of multicellular organisms also use these pathways. To explore how cell signaling modulates MPR trafficking, we used high-throughput RNA interference (RNAi) to target the human kinome and phosphatome. Using high-content image analysis, we identified 127 kinases and phosphatases belonging to different signaling networks that regulate MPR trafficking and/or the dynamic states of the subcellular compartments encountered by the MPRs. Our analysis maps the MPR trafficking pathways based on enzymes regulating phosphatidylinositol phosphate metabolism. Furthermore, it reveals how cell signaling controls the biogenesis of post-Golgi tubular carriers destined to enter the endosomal system through a SRC-dependent pathway regulating ARF1 and RAC1 signaling and myosin II activity.
- 650 _2
- $a ADP-ribosylační faktor 1 $x genetika $x metabolismus $7 D020823
- 650 _2
- $a buněčná membrána $x enzymologie $7 D002462
- 650 _2
- $a shluková analýza $7 D016000
- 650 _2
- $a endozomy $x enzymologie $7 D011992
- 650 _2
- $a regulace genové exprese enzymů $7 D015971
- 650 _2
- $a genové regulační sítě $7 D053263
- 650 _2
- $a HeLa buňky $7 D006367
- 650 _2
- $a vysoce účinné nukleotidové sekvenování $x metody $7 D059014
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a fosfatidylinositolfosfáty $x metabolismus $7 D018129
- 650 _2
- $a mapy interakcí proteinů $7 D060066
- 650 _2
- $a transport proteinů $x genetika $7 D021381
- 650 12
- $a RNA interference $7 D034622
- 650 _2
- $a receptor IGF typ 2 $x genetika $x metabolismus $7 D017527
- 650 _2
- $a signální transdukce $7 D015398
- 650 _2
- $a transfekce $7 D014162
- 650 _2
- $a rac1 protein vázající GTP $x genetika $x metabolismus $7 D020830
- 650 _2
- $a skupina kinas odvozených od src-genu $x genetika $x metabolismus $7 D019061
- 650 _2
- $a trans-Golgiho síť $x enzymologie $7 D021601
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a audiovizuální média $7 D059040
- 700 1_
- $a Chenna, Ramu $u Biotechnology Center, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany.
- 700 1_
- $a Czupalla, Cornelia $u Biotechnology Center, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany.
- 700 1_
- $a Esner, Milan $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Building A1, 62500 Brno, Czech Republic.
- 700 1_
- $a Christ, Sara $u Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
- 700 1_
- $a Lenhard, Steffi $u Biotechnology Center, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany.
- 700 1_
- $a Korn, Kerstin $u Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
- 700 1_
- $a Meyenhofer, Felix $u Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
- 700 1_
- $a Bickle, Marc $u Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
- 700 1_
- $a Zerial, Marino $u Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
- 700 1_
- $a Hoflack, Bernard $u Biotechnology Center, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany bernard.hoflack@biotec.tu-dresden.de.
- 773 0_
- $w MED00002576 $t Journal of cell science $x 1477-9137 $g Roč. 127, č. 23 (2014), s. 5079-92
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25278553 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20151005 $b ABA008
- 991 __
- $a 20151013110221 $b ABA008
- 999 __
- $a ok $b bmc $g 1092692 $s 914942
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 127 $c 23 $d 5079-92 $e 20141002 $i 1477-9137 $m Journal of cell science $n J Cell Sci $x MED00002576
- LZP __
- $a Pubmed-20151005