• Je něco špatně v tomto záznamu ?

Population genetic dynamics of an invasion reconstructed from the sediment egg bank

M. Möst, S. Oexle, S. Marková, D. Aidukaite, L. Baumgartner, HB. Stich, M. Wessels, D. Martin-Creuzburg, P. Spaak,

. 2015 ; 24 (16) : 4074-93. [pub] 20150727

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16000102

Biological invasions are a global issue with far-reaching consequences for single species, communities and whole ecosystems. Our understanding of modes and mechanisms of biological invasions requires knowledge of the genetic processes associated with successful invasions. In many instances, this information is particularly difficult to obtain as the initial phases of the invasion process often pass unnoticed and we rely on inferences from contemporary population genetic data. Here, we combined historic information with the genetic analysis of resting eggs to reconstruct the invasion of Daphnia pulicaria into Lower Lake Constance (LLC) in the 1970s from the resting egg bank in the sediments. We identified the invader as 'European D. pulicaria' originating from meso- and eutrophic lowland lakes and ponds in Central Europe. The founding population was characterized by extremely low genetic variation in the resting egg bank that increased considerably over time. Furthermore, strong evidence for selfing and/or biparental inbreeding was found during the initial phase of the invasion, followed by a drop of selfing rate to low levels in subsequent decades. Moreover, the increase in genetic variation was most pronounced during early stages of the invasion, suggesting additional introductions during this period. Our study highlights that genetic data covering the entire invasion process from its beginning can be crucial to accurately reconstruct the invasion history of a species. We show that propagule banks can preserve such information enabling the study of population genetic dynamics and sources of genetic variation in successful invasive populations.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16000102
003      
CZ-PrNML
005      
20160126121101.0
007      
ta
008      
160108s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/mec.13298 $2 doi
035    __
$a (PubMed)26122166
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Möst, Markus $u Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland. Institute of Integrative Biology, ETH Zurich, CH-8092, Zurich, Switzerland. Department of Zoology, University of Cambridge, CB2 3EJ, Cambridge, UK.
245    10
$a Population genetic dynamics of an invasion reconstructed from the sediment egg bank / $c M. Möst, S. Oexle, S. Marková, D. Aidukaite, L. Baumgartner, HB. Stich, M. Wessels, D. Martin-Creuzburg, P. Spaak,
520    9_
$a Biological invasions are a global issue with far-reaching consequences for single species, communities and whole ecosystems. Our understanding of modes and mechanisms of biological invasions requires knowledge of the genetic processes associated with successful invasions. In many instances, this information is particularly difficult to obtain as the initial phases of the invasion process often pass unnoticed and we rely on inferences from contemporary population genetic data. Here, we combined historic information with the genetic analysis of resting eggs to reconstruct the invasion of Daphnia pulicaria into Lower Lake Constance (LLC) in the 1970s from the resting egg bank in the sediments. We identified the invader as 'European D. pulicaria' originating from meso- and eutrophic lowland lakes and ponds in Central Europe. The founding population was characterized by extremely low genetic variation in the resting egg bank that increased considerably over time. Furthermore, strong evidence for selfing and/or biparental inbreeding was found during the initial phase of the invasion, followed by a drop of selfing rate to low levels in subsequent decades. Moreover, the increase in genetic variation was most pronounced during early stages of the invasion, suggesting additional introductions during this period. Our study highlights that genetic data covering the entire invasion process from its beginning can be crucial to accurately reconstruct the invasion history of a species. We show that propagule banks can preserve such information enabling the study of population genetic dynamics and sources of genetic variation in successful invasive populations.
650    _2
$a zvířata $7 D000818
650    _2
$a buněčné jádro $x genetika $7 D002467
650    _2
$a mitochondriální DNA $x genetika $7 D004272
650    _2
$a Daphnia $x genetika $7 D003621
650    _2
$a frekvence genu $7 D005787
650    _2
$a genetické markery $7 D005819
650    _2
$a genetická variace $7 D014644
650    12
$a populační genetika $7 D005828
650    _2
$a genotyp $7 D005838
650    _2
$a geologické sedimenty $7 D019015
650    _2
$a inbreeding $7 D007178
650    _2
$a zavlečené druhy $7 D058865
650    _2
$a jezera $7 D060106
650    _2
$a mikrosatelitní repetice $7 D018895
650    _2
$a modely genetické $7 D008957
650    _2
$a molekulární sekvence - údaje $7 D008969
650    12
$a ovum $7 D010063
650    _2
$a fylogeneze $7 D010802
650    _2
$a populační dynamika $7 D011157
650    _2
$a sekvenční analýza DNA $7 D017422
651    _2
$a Německo $7 D005858
651    _2
$a Švýcarsko $7 D013557
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Oexle, Sarah $u Limnological Institute, University of Konstanz, D-78464, Konstanz, Germany. Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, B-3000, Leuven, Belgium.
700    1_
$a Marková, Silvia $u Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburská 89, 27721, Liběchov, Czech Republic.
700    1_
$a Aidukaite, Dalia $u Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland. $7 gn_A_00002633
700    1_
$a Baumgartner, Livia $u Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland.
700    1_
$a Stich, Hans-Bernd $u Institute for Lake Research, D-88085, Langenargen, Germany.
700    1_
$a Wessels, Martin $u Institute for Lake Research, D-88085, Langenargen, Germany.
700    1_
$a Martin-Creuzburg, Dominik $u Limnological Institute, University of Konstanz, D-78464, Konstanz, Germany.
700    1_
$a Spaak, Piet $u Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland. Institute of Integrative Biology, ETH Zurich, CH-8092, Zurich, Switzerland.
773    0_
$w MED00006323 $t Molecular ecology $x 1365-294X $g Roč. 24, č. 16 (2015), s. 4074-93
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26122166 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160108 $b ABA008
991    __
$a 20160126121224 $b ABA008
999    __
$a ok $b bmc $g 1102383 $s 924308
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 24 $c 16 $d 4074-93 $e 20150727 $i 1365-294X $m Molecular ecology $n Mol Ecol $x MED00006323
LZP    __
$a Pubmed-20160108

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...