-
Je něco špatně v tomto záznamu ?
Population genetic dynamics of an invasion reconstructed from the sediment egg bank
M. Möst, S. Oexle, S. Marková, D. Aidukaite, L. Baumgartner, HB. Stich, M. Wessels, D. Martin-Creuzburg, P. Spaak,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26122166
DOI
10.1111/mec.13298
Knihovny.cz E-zdroje
- MeSH
- buněčné jádro genetika MeSH
- Daphnia genetika MeSH
- frekvence genu MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genetické markery MeSH
- genotyp MeSH
- geologické sedimenty MeSH
- inbreeding MeSH
- jezera MeSH
- mikrosatelitní repetice MeSH
- mitochondriální DNA genetika MeSH
- modely genetické MeSH
- molekulární sekvence - údaje MeSH
- ovum * MeSH
- populační dynamika MeSH
- populační genetika * MeSH
- sekvenční analýza DNA MeSH
- zavlečené druhy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Německo MeSH
- Švýcarsko MeSH
Biological invasions are a global issue with far-reaching consequences for single species, communities and whole ecosystems. Our understanding of modes and mechanisms of biological invasions requires knowledge of the genetic processes associated with successful invasions. In many instances, this information is particularly difficult to obtain as the initial phases of the invasion process often pass unnoticed and we rely on inferences from contemporary population genetic data. Here, we combined historic information with the genetic analysis of resting eggs to reconstruct the invasion of Daphnia pulicaria into Lower Lake Constance (LLC) in the 1970s from the resting egg bank in the sediments. We identified the invader as 'European D. pulicaria' originating from meso- and eutrophic lowland lakes and ponds in Central Europe. The founding population was characterized by extremely low genetic variation in the resting egg bank that increased considerably over time. Furthermore, strong evidence for selfing and/or biparental inbreeding was found during the initial phase of the invasion, followed by a drop of selfing rate to low levels in subsequent decades. Moreover, the increase in genetic variation was most pronounced during early stages of the invasion, suggesting additional introductions during this period. Our study highlights that genetic data covering the entire invasion process from its beginning can be crucial to accurately reconstruct the invasion history of a species. We show that propagule banks can preserve such information enabling the study of population genetic dynamics and sources of genetic variation in successful invasive populations.
Eawag Swiss Federal Institute of Aquatic Science and Technology CH 8600 Dübendorf Switzerland
Institute for Lake Research D 88085 Langenargen Germany
Limnological Institute University of Konstanz D 78464 Konstanz Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16000102
- 003
- CZ-PrNML
- 005
- 20160126121101.0
- 007
- ta
- 008
- 160108s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/mec.13298 $2 doi
- 035 __
- $a (PubMed)26122166
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Möst, Markus $u Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland. Institute of Integrative Biology, ETH Zurich, CH-8092, Zurich, Switzerland. Department of Zoology, University of Cambridge, CB2 3EJ, Cambridge, UK.
- 245 10
- $a Population genetic dynamics of an invasion reconstructed from the sediment egg bank / $c M. Möst, S. Oexle, S. Marková, D. Aidukaite, L. Baumgartner, HB. Stich, M. Wessels, D. Martin-Creuzburg, P. Spaak,
- 520 9_
- $a Biological invasions are a global issue with far-reaching consequences for single species, communities and whole ecosystems. Our understanding of modes and mechanisms of biological invasions requires knowledge of the genetic processes associated with successful invasions. In many instances, this information is particularly difficult to obtain as the initial phases of the invasion process often pass unnoticed and we rely on inferences from contemporary population genetic data. Here, we combined historic information with the genetic analysis of resting eggs to reconstruct the invasion of Daphnia pulicaria into Lower Lake Constance (LLC) in the 1970s from the resting egg bank in the sediments. We identified the invader as 'European D. pulicaria' originating from meso- and eutrophic lowland lakes and ponds in Central Europe. The founding population was characterized by extremely low genetic variation in the resting egg bank that increased considerably over time. Furthermore, strong evidence for selfing and/or biparental inbreeding was found during the initial phase of the invasion, followed by a drop of selfing rate to low levels in subsequent decades. Moreover, the increase in genetic variation was most pronounced during early stages of the invasion, suggesting additional introductions during this period. Our study highlights that genetic data covering the entire invasion process from its beginning can be crucial to accurately reconstruct the invasion history of a species. We show that propagule banks can preserve such information enabling the study of population genetic dynamics and sources of genetic variation in successful invasive populations.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a buněčné jádro $x genetika $7 D002467
- 650 _2
- $a mitochondriální DNA $x genetika $7 D004272
- 650 _2
- $a Daphnia $x genetika $7 D003621
- 650 _2
- $a frekvence genu $7 D005787
- 650 _2
- $a genetické markery $7 D005819
- 650 _2
- $a genetická variace $7 D014644
- 650 12
- $a populační genetika $7 D005828
- 650 _2
- $a genotyp $7 D005838
- 650 _2
- $a geologické sedimenty $7 D019015
- 650 _2
- $a inbreeding $7 D007178
- 650 _2
- $a zavlečené druhy $7 D058865
- 650 _2
- $a jezera $7 D060106
- 650 _2
- $a mikrosatelitní repetice $7 D018895
- 650 _2
- $a modely genetické $7 D008957
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 12
- $a ovum $7 D010063
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a populační dynamika $7 D011157
- 650 _2
- $a sekvenční analýza DNA $7 D017422
- 651 _2
- $a Německo $7 D005858
- 651 _2
- $a Švýcarsko $7 D013557
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Oexle, Sarah $u Limnological Institute, University of Konstanz, D-78464, Konstanz, Germany. Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, B-3000, Leuven, Belgium.
- 700 1_
- $a Marková, Silvia $u Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburská 89, 27721, Liběchov, Czech Republic.
- 700 1_
- $a Aidukaite, Dalia $u Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland. $7 gn_A_00002633
- 700 1_
- $a Baumgartner, Livia $u Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland.
- 700 1_
- $a Stich, Hans-Bernd $u Institute for Lake Research, D-88085, Langenargen, Germany.
- 700 1_
- $a Wessels, Martin $u Institute for Lake Research, D-88085, Langenargen, Germany.
- 700 1_
- $a Martin-Creuzburg, Dominik $u Limnological Institute, University of Konstanz, D-78464, Konstanz, Germany.
- 700 1_
- $a Spaak, Piet $u Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland. Institute of Integrative Biology, ETH Zurich, CH-8092, Zurich, Switzerland.
- 773 0_
- $w MED00006323 $t Molecular ecology $x 1365-294X $g Roč. 24, č. 16 (2015), s. 4074-93
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26122166 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160108 $b ABA008
- 991 __
- $a 20160126121224 $b ABA008
- 999 __
- $a ok $b bmc $g 1102383 $s 924308
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 24 $c 16 $d 4074-93 $e 20150727 $i 1365-294X $m Molecular ecology $n Mol Ecol $x MED00006323
- LZP __
- $a Pubmed-20160108