-
Je něco špatně v tomto záznamu ?
Targeted next-generation sequencing in chronic lymphocytic leukemia: a high-throughput yet tailored approach will facilitate implementation in a clinical setting
LA. Sutton, V. Ljungström, L. Mansouri, E. Young, D. Cortese, V. Navrkalova, J. Malcikova, AF. Muggen, M. Trbusek, P. Panagiotidis, F. Davi, C. Belessi, AW. Langerak, P. Ghia, S. Pospisilova, K. Stamatopoulos, R. Rosenquist,
Jazyk angličtina Země Itálie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 1994
Free Medical Journals
od 1994
Freely Accessible Science Journals
od 1994
PubMed Central
od 2009
Europe PubMed Central
od 2009
Open Access Digital Library
od 1994-01-01
ROAD: Directory of Open Access Scholarly Resources
od 1996
- MeSH
- alely MeSH
- chronická lymfatická leukemie diagnóza genetika metabolismus patologie MeSH
- exprese genu MeSH
- fosfoproteiny genetika metabolismus MeSH
- frekvence genu MeSH
- lidé MeSH
- malý jaderný ribonukleoprotein U2 genetika metabolismus MeSH
- mutace * MeSH
- myeloidní diferenciační faktor 88 genetika metabolismus MeSH
- nádorové proteiny genetika metabolismus MeSH
- nádorový supresorový protein p53 genetika metabolismus MeSH
- prognóza MeSH
- receptor Notch1 genetika metabolismus MeSH
- vysoce účinné nukleotidové sekvenování * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Next-generation sequencing has revealed novel recurrent mutations in chronic lymphocytic leukemia, particularly in patients with aggressive disease. Here, we explored targeted re-sequencing as a novel strategy to assess the mutation status of genes with prognostic potential. To this end, we utilized HaloPlex targeted enrichment technology and designed a panel including nine genes: ATM, BIRC3, MYD88, NOTCH1, SF3B1 and TP53, which have been linked to the prognosis of chronic lymphocytic leukemia, and KLHL6, POT1 and XPO1, which are less characterized but were found to be recurrently mutated in various sequencing studies. A total of 188 chronic lymphocytic leukemia patients with poor prognostic features (unmutated IGHV, n=137; IGHV3-21 subset #2, n=51) were sequenced on the HiSeq 2000 and data were analyzed using well-established bioinformatics tools. Using a conservative cutoff of 10% for the mutant allele, we found that 114/180 (63%) patients carried at least one mutation, with mutations in ATM, BIRC3, NOTCH1, SF3B1 and TP53 accounting for 149/177 (84%) of all mutations. We selected 155 mutations for Sanger validation (variant allele frequency, 10-99%) and 93% (144/155) of mutations were confirmed; notably, all 11 discordant variants had a variant allele frequency between 11-27%, hence at the detection limit of conventional Sanger sequencing. Technical precision was assessed by repeating the entire HaloPlex procedure for 63 patients; concordance was found for 77/82 (94%) mutations. In summary, this study demonstrates that targeted next-generation sequencing is an accurate and reproducible technique potentially suitable for routine screening, eventually as a stand-alone test without the need for confirmation by Sanger sequencing.
1st Department of Propaedeutic Medicine School of Medicine University of Athens Greece
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands
Hematology Department Nikea General Hospital Pireaus Greece
Laboratory of Hematology and Universite Pierre et Marie Curie Hopital Pitie Salpetriere Paris France
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16000476
- 003
- CZ-PrNML
- 005
- 20160125123059.0
- 007
- ta
- 008
- 160108s2015 it f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3324/haematol.2014.109777 $2 doi
- 035 __
- $a (PubMed)25480502
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a it
- 100 1_
- $a Sutton, Lesley-Ann $u Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden.
- 245 10
- $a Targeted next-generation sequencing in chronic lymphocytic leukemia: a high-throughput yet tailored approach will facilitate implementation in a clinical setting / $c LA. Sutton, V. Ljungström, L. Mansouri, E. Young, D. Cortese, V. Navrkalova, J. Malcikova, AF. Muggen, M. Trbusek, P. Panagiotidis, F. Davi, C. Belessi, AW. Langerak, P. Ghia, S. Pospisilova, K. Stamatopoulos, R. Rosenquist,
- 520 9_
- $a Next-generation sequencing has revealed novel recurrent mutations in chronic lymphocytic leukemia, particularly in patients with aggressive disease. Here, we explored targeted re-sequencing as a novel strategy to assess the mutation status of genes with prognostic potential. To this end, we utilized HaloPlex targeted enrichment technology and designed a panel including nine genes: ATM, BIRC3, MYD88, NOTCH1, SF3B1 and TP53, which have been linked to the prognosis of chronic lymphocytic leukemia, and KLHL6, POT1 and XPO1, which are less characterized but were found to be recurrently mutated in various sequencing studies. A total of 188 chronic lymphocytic leukemia patients with poor prognostic features (unmutated IGHV, n=137; IGHV3-21 subset #2, n=51) were sequenced on the HiSeq 2000 and data were analyzed using well-established bioinformatics tools. Using a conservative cutoff of 10% for the mutant allele, we found that 114/180 (63%) patients carried at least one mutation, with mutations in ATM, BIRC3, NOTCH1, SF3B1 and TP53 accounting for 149/177 (84%) of all mutations. We selected 155 mutations for Sanger validation (variant allele frequency, 10-99%) and 93% (144/155) of mutations were confirmed; notably, all 11 discordant variants had a variant allele frequency between 11-27%, hence at the detection limit of conventional Sanger sequencing. Technical precision was assessed by repeating the entire HaloPlex procedure for 63 patients; concordance was found for 77/82 (94%) mutations. In summary, this study demonstrates that targeted next-generation sequencing is an accurate and reproducible technique potentially suitable for routine screening, eventually as a stand-alone test without the need for confirmation by Sanger sequencing.
- 650 _2
- $a alely $7 D000483
- 650 _2
- $a exprese genu $7 D015870
- 650 _2
- $a frekvence genu $7 D005787
- 650 12
- $a vysoce účinné nukleotidové sekvenování $7 D059014
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a chronická lymfatická leukemie $x diagnóza $x genetika $x metabolismus $x patologie $7 D015451
- 650 12
- $a mutace $7 D009154
- 650 _2
- $a myeloidní diferenciační faktor 88 $x genetika $x metabolismus $7 D053594
- 650 _2
- $a nádorové proteiny $x genetika $x metabolismus $7 D009363
- 650 _2
- $a fosfoproteiny $x genetika $x metabolismus $7 D010750
- 650 _2
- $a prognóza $7 D011379
- 650 _2
- $a receptor Notch1 $x genetika $x metabolismus $7 D051881
- 650 _2
- $a malý jaderný ribonukleoprotein U2 $x genetika $x metabolismus $7 D017413
- 650 _2
- $a nádorový supresorový protein p53 $x genetika $x metabolismus $7 D016159
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Ljungström, Viktor $u Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden.
- 700 1_
- $a Mansouri, Larry $u Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden.
- 700 1_
- $a Young, Emma $u Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden.
- 700 1_
- $a Cortese, Diego $u Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden.
- 700 1_
- $a Navrkalova, Veronika $u Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Malcikova, Jitka $u Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Muggen, Alice F $u Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
- 700 1_
- $a Trbusek, Martin $u Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Panagiotidis, Panagiotis $u First Department of Propaedeutic Medicine, School of Medicine, University of Athens, Greece.
- 700 1_
- $a Davi, Frederic $u Laboratory of Hematology and Universite Pierre et Marie Curie, Hopital Pitie-Salpetriere, Paris, France.
- 700 1_
- $a Belessi, Chrysoula $u Hematology Department, Nikea General Hospital, Pireaus, Greece.
- 700 1_
- $a Langerak, Anton W $u Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
- 700 1_
- $a Ghia, Paolo $u Università Vita-Salute San Raffaele, Milan, Italy Division of Molecular Oncology and Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- 700 1_
- $a Pospisilova, Sarka $u Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Stamatopoulos, Kostas $u Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden Institute of Applied Biosciences, CERTH, Thessaloniki, Greece Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece.
- 700 1_
- $a Rosenquist, Richard $u Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden richard.rosenquist@igp.uu.se.
- 773 0_
- $w MED00001963 $t Haematologica $x 1592-8721 $g Roč. 100, č. 3 (2015), s. 370-6
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25480502 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160108 $b ABA008
- 991 __
- $a 20160125123222 $b ABA008
- 999 __
- $a ok $b bmc $g 1102757 $s 924682
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 100 $c 3 $d 370-6 $e 20141205 $i 1592-8721 $m Haematologica $n Haematologica $x MED00001963
- LZP __
- $a Pubmed-20160108