Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Normalizing glutamine concentration causes mitochondrial uncoupling in an in vitro model of human skeletal muscle

A. Krajcova, J. Ziak, K. Jiroutkova, J. Patkova, M. Elkalaf, V. Dzupa, J. Trnka, F. Duska,

. 2015 ; 39 (2) : 180-189. [pub] 20131129

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc16000807

Grantová podpora
NT12319 MZ0 CEP - Centrální evidence projektů

BACKGROUND: Glutamine has been considered essential for rapidly dividing cells, but its effect on mitochondrial function is unknown. MATERIALS AND METHODS: Human myoblasts were isolated from skeletal muscle biopsy samples (n = 9) and exposed for 20 days to 6 different glutamine concentrations (0, 100, 200, 300, 500, and 5000 µM). Cells were trypsinized and manually counted every 5 days. Seven days before the end of exposure, half of these cells were allowed to differentiate to myotubes. Afterward, energy metabolism in both myotubes and myoblasts was assessed by extracellular flux analysis (Seahorse Biosciences, Billerica, MA). The protocol for myoblasts was optimized in preliminary experiments. To account for different mitochondrial density or cell count, data were normalized to citrate synthase activity. RESULTS: Fastest myoblast proliferation was observed at 300 µM glutamine, with a significant reduction at 0 and 100 µM. Glutamine did not influence basal oxygen consumption, anaerobic glycolysis or respiratory chain capacity. Glutamine significantly (P = .015) influenced the leak through the inner mitochondrial membrane. Efficiency of respiratory chain was highest at 200-300 µM glutamine (~90% of oxygen used for adenosine triphosphate synthesis). Increased glutamine concentration to 500 or 5000 µM caused mitochondrial uncoupling in myoblasts and myotubes, decreasing the efficiency of the respiratory chain to ~70%. CONCLUSION: Glutamine concentrations, consistent with moderate clinical hypoglutaminemia (300 µM), bring about an optimal condition of myoblast proliferation and for efficiency of aerobic phosphorylation in an in vitro model of human skeletal muscle. These data support the hypothesis of hypoglutaminemia as an adaptive phenomenon in conditions leading to bioenergetic failure (eg, critical illness).

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16000807
003      
CZ-PrNML
005      
20170504133558.0
007      
ta
008      
160108s2015 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1177/0148607113513801 $2 doi
035    __
$a (PubMed)24291738
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Krajčová, Adéla $u Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic. $7 xx0244873
245    10
$a Normalizing glutamine concentration causes mitochondrial uncoupling in an in vitro model of human skeletal muscle / $c A. Krajcova, J. Ziak, K. Jiroutkova, J. Patkova, M. Elkalaf, V. Dzupa, J. Trnka, F. Duska,
520    9_
$a BACKGROUND: Glutamine has been considered essential for rapidly dividing cells, but its effect on mitochondrial function is unknown. MATERIALS AND METHODS: Human myoblasts were isolated from skeletal muscle biopsy samples (n = 9) and exposed for 20 days to 6 different glutamine concentrations (0, 100, 200, 300, 500, and 5000 µM). Cells were trypsinized and manually counted every 5 days. Seven days before the end of exposure, half of these cells were allowed to differentiate to myotubes. Afterward, energy metabolism in both myotubes and myoblasts was assessed by extracellular flux analysis (Seahorse Biosciences, Billerica, MA). The protocol for myoblasts was optimized in preliminary experiments. To account for different mitochondrial density or cell count, data were normalized to citrate synthase activity. RESULTS: Fastest myoblast proliferation was observed at 300 µM glutamine, with a significant reduction at 0 and 100 µM. Glutamine did not influence basal oxygen consumption, anaerobic glycolysis or respiratory chain capacity. Glutamine significantly (P = .015) influenced the leak through the inner mitochondrial membrane. Efficiency of respiratory chain was highest at 200-300 µM glutamine (~90% of oxygen used for adenosine triphosphate synthesis). Increased glutamine concentration to 500 or 5000 µM caused mitochondrial uncoupling in myoblasts and myotubes, decreasing the efficiency of the respiratory chain to ~70%. CONCLUSION: Glutamine concentrations, consistent with moderate clinical hypoglutaminemia (300 µM), bring about an optimal condition of myoblast proliferation and for efficiency of aerobic phosphorylation in an in vitro model of human skeletal muscle. These data support the hypothesis of hypoglutaminemia as an adaptive phenomenon in conditions leading to bioenergetic failure (eg, critical illness).
650    _2
$a biopsie $7 D001706
650    _2
$a proliferace buněk $x účinky léků $7 D049109
650    _2
$a vztah mezi dávkou a účinkem léčiva $7 D004305
650    _2
$a transport elektronů $x účinky léků $7 D004579
650    _2
$a energetický metabolismus $x účinky léků $7 D004734
650    _2
$a glutamin $x metabolismus $x farmakologie $7 D005973
650    _2
$a lidé $7 D006801
650    _2
$a techniky in vitro $7 D066298
650    _2
$a mitochondrie $x účinky léků $x metabolismus $7 D008928
650    _2
$a kosterní svalová vlákna $x cytologie $x účinky léků $7 D018485
650    _2
$a kosterní svaly $x cytologie $7 D018482
650    _2
$a myoblasty kosterní $x cytologie $x účinky léků $7 D032448
650    _2
$a spotřeba kyslíku $x účinky léků $7 D010101
650    _2
$a fosforylace $x účinky léků $7 D010766
655    _2
$a časopisecké články $7 D016428
700    1_
$a Ziak, Jakub $u Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic.
700    1_
$a Jiroutkova, Katerina $u Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic.
700    1_
$a Patkova, Jana $u Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic.
700    1_
$a Elkalaf, Moustafa $u Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic.
700    1_
$a Džupa, Valér, $u Department of Orthopaedic Surgery, Third Faculty of Medicine, Charles University in Prague, Czech Republic. $d 1962- $7 pna2005262027
700    1_
$a Trnka, Jan, $u Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic. $d 1978- $7 mzk2007386028
700    1_
$a Duška, František, $u Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic fduska@yahoo.com. $d 1976- $7 mzk2007386027
773    0_
$w MED00002877 $t JPEN. Journal of parenteral and enteral nutrition $x 0148-6071 $g Roč. 39, č. 2 (2015), s. 180-189
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24291738 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160108 $b ABA008
991    __
$a 20170504133927 $b ABA008
999    __
$a ok $b bmc $g 1103088 $s 925013
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 39 $c 2 $d 180-189 $e 20131129 $i 0148-6071 $m JPEN. Journal of parenteral and enteral nutrition $n JPEN J Parenter Enteral Nutr $x MED00002877
GRA    __
$a NT12319 $p MZ0
LZP    __
$a Pubmed-20160108

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...