-
Je něco špatně v tomto záznamu ?
Normalizing glutamine concentration causes mitochondrial uncoupling in an in vitro model of human skeletal muscle
A. Krajcova, J. Ziak, K. Jiroutkova, J. Patkova, M. Elkalaf, V. Dzupa, J. Trnka, F. Duska,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
Grantová podpora
NT12319
MZ0
CEP - Centrální evidence projektů
PubMed
24291738
DOI
10.1177/0148607113513801
Knihovny.cz E-zdroje
- MeSH
- biopsie MeSH
- energetický metabolismus účinky léků MeSH
- fosforylace účinky léků MeSH
- glutamin metabolismus farmakologie MeSH
- kosterní svalová vlákna cytologie účinky léků MeSH
- kosterní svaly cytologie MeSH
- lidé MeSH
- mitochondrie účinky léků metabolismus MeSH
- myoblasty kosterní cytologie účinky léků MeSH
- proliferace buněk účinky léků MeSH
- spotřeba kyslíku účinky léků MeSH
- techniky in vitro MeSH
- transport elektronů účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Glutamine has been considered essential for rapidly dividing cells, but its effect on mitochondrial function is unknown. MATERIALS AND METHODS: Human myoblasts were isolated from skeletal muscle biopsy samples (n = 9) and exposed for 20 days to 6 different glutamine concentrations (0, 100, 200, 300, 500, and 5000 µM). Cells were trypsinized and manually counted every 5 days. Seven days before the end of exposure, half of these cells were allowed to differentiate to myotubes. Afterward, energy metabolism in both myotubes and myoblasts was assessed by extracellular flux analysis (Seahorse Biosciences, Billerica, MA). The protocol for myoblasts was optimized in preliminary experiments. To account for different mitochondrial density or cell count, data were normalized to citrate synthase activity. RESULTS: Fastest myoblast proliferation was observed at 300 µM glutamine, with a significant reduction at 0 and 100 µM. Glutamine did not influence basal oxygen consumption, anaerobic glycolysis or respiratory chain capacity. Glutamine significantly (P = .015) influenced the leak through the inner mitochondrial membrane. Efficiency of respiratory chain was highest at 200-300 µM glutamine (~90% of oxygen used for adenosine triphosphate synthesis). Increased glutamine concentration to 500 or 5000 µM caused mitochondrial uncoupling in myoblasts and myotubes, decreasing the efficiency of the respiratory chain to ~70%. CONCLUSION: Glutamine concentrations, consistent with moderate clinical hypoglutaminemia (300 µM), bring about an optimal condition of myoblast proliferation and for efficiency of aerobic phosphorylation in an in vitro model of human skeletal muscle. These data support the hypothesis of hypoglutaminemia as an adaptive phenomenon in conditions leading to bioenergetic failure (eg, critical illness).
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16000807
- 003
- CZ-PrNML
- 005
- 20170504133558.0
- 007
- ta
- 008
- 160108s2015 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1177/0148607113513801 $2 doi
- 035 __
- $a (PubMed)24291738
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Krajčová, Adéla $u Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic. $7 xx0244873
- 245 10
- $a Normalizing glutamine concentration causes mitochondrial uncoupling in an in vitro model of human skeletal muscle / $c A. Krajcova, J. Ziak, K. Jiroutkova, J. Patkova, M. Elkalaf, V. Dzupa, J. Trnka, F. Duska,
- 520 9_
- $a BACKGROUND: Glutamine has been considered essential for rapidly dividing cells, but its effect on mitochondrial function is unknown. MATERIALS AND METHODS: Human myoblasts were isolated from skeletal muscle biopsy samples (n = 9) and exposed for 20 days to 6 different glutamine concentrations (0, 100, 200, 300, 500, and 5000 µM). Cells were trypsinized and manually counted every 5 days. Seven days before the end of exposure, half of these cells were allowed to differentiate to myotubes. Afterward, energy metabolism in both myotubes and myoblasts was assessed by extracellular flux analysis (Seahorse Biosciences, Billerica, MA). The protocol for myoblasts was optimized in preliminary experiments. To account for different mitochondrial density or cell count, data were normalized to citrate synthase activity. RESULTS: Fastest myoblast proliferation was observed at 300 µM glutamine, with a significant reduction at 0 and 100 µM. Glutamine did not influence basal oxygen consumption, anaerobic glycolysis or respiratory chain capacity. Glutamine significantly (P = .015) influenced the leak through the inner mitochondrial membrane. Efficiency of respiratory chain was highest at 200-300 µM glutamine (~90% of oxygen used for adenosine triphosphate synthesis). Increased glutamine concentration to 500 or 5000 µM caused mitochondrial uncoupling in myoblasts and myotubes, decreasing the efficiency of the respiratory chain to ~70%. CONCLUSION: Glutamine concentrations, consistent with moderate clinical hypoglutaminemia (300 µM), bring about an optimal condition of myoblast proliferation and for efficiency of aerobic phosphorylation in an in vitro model of human skeletal muscle. These data support the hypothesis of hypoglutaminemia as an adaptive phenomenon in conditions leading to bioenergetic failure (eg, critical illness).
- 650 _2
- $a biopsie $7 D001706
- 650 _2
- $a proliferace buněk $x účinky léků $7 D049109
- 650 _2
- $a vztah mezi dávkou a účinkem léčiva $7 D004305
- 650 _2
- $a transport elektronů $x účinky léků $7 D004579
- 650 _2
- $a energetický metabolismus $x účinky léků $7 D004734
- 650 _2
- $a glutamin $x metabolismus $x farmakologie $7 D005973
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a techniky in vitro $7 D066298
- 650 _2
- $a mitochondrie $x účinky léků $x metabolismus $7 D008928
- 650 _2
- $a kosterní svalová vlákna $x cytologie $x účinky léků $7 D018485
- 650 _2
- $a kosterní svaly $x cytologie $7 D018482
- 650 _2
- $a myoblasty kosterní $x cytologie $x účinky léků $7 D032448
- 650 _2
- $a spotřeba kyslíku $x účinky léků $7 D010101
- 650 _2
- $a fosforylace $x účinky léků $7 D010766
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Ziak, Jakub $u Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic.
- 700 1_
- $a Jiroutkova, Katerina $u Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic.
- 700 1_
- $a Patkova, Jana $u Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic.
- 700 1_
- $a Elkalaf, Moustafa $u Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic.
- 700 1_
- $a Džupa, Valér, $u Department of Orthopaedic Surgery, Third Faculty of Medicine, Charles University in Prague, Czech Republic. $d 1962- $7 pna2005262027
- 700 1_
- $a Trnka, Jan, $u Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic. $d 1978- $7 mzk2007386028
- 700 1_
- $a Duška, František, $u Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic fduska@yahoo.com. $d 1976- $7 mzk2007386027
- 773 0_
- $w MED00002877 $t JPEN. Journal of parenteral and enteral nutrition $x 0148-6071 $g Roč. 39, č. 2 (2015), s. 180-189
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/24291738 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160108 $b ABA008
- 991 __
- $a 20170504133927 $b ABA008
- 999 __
- $a ok $b bmc $g 1103088 $s 925013
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 39 $c 2 $d 180-189 $e 20131129 $i 0148-6071 $m JPEN. Journal of parenteral and enteral nutrition $n JPEN J Parenter Enteral Nutr $x MED00002877
- GRA __
- $a NT12319 $p MZ0
- LZP __
- $a Pubmed-20160108