Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems

J. Farah, V. Mares, M. Romero-Expósito, S. Trinkl, C. Domingo, V. Dufek, M. Klodowska, J. Kubancak, Ž. Knežević, M. Liszka, M. Majer, S. Miljanić, O. Ploc, K. Schinner, L. Stolarczyk, F. Trompier, M. Wielunski, P. Olko, RM. Harrison,

. 2015 ; 42 (5) : 2572-84.

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

PURPOSE: To characterize stray radiation around the target volume in scanning proton therapy and study the performance of active neutron monitors. METHODS: Working Group 9 of the European Radiation Dosimetry Group (EURADOS WG9-Radiation protection in medicine) carried out a large measurement campaign at the Trento Centro di Protonterapia (Trento, Italy) in order to determine the neutron spectra near the patient using two extended-range Bonner sphere spectrometry (BSS) systems. In addition, the work focused on acknowledging the performance of different commercial active dosimetry systems when measuring neutron ambient dose equivalents, H(∗)(10), at several positions inside (8 positions) and outside (3 positions) the treatment room. Detectors included three TEPCs--tissue equivalent proportional counters (Hawk type from Far West Technology, Inc.) and six rem-counters (WENDI-II, LB 6411, RadEye™ NL, a regular and an extended-range NM2B). Meanwhile, the photon component of stray radiation was deduced from the low-lineal energy transfer part of TEPC spectra or measured using a Thermo Scientific™ FH-40G survey meter. Experiments involved a water tank phantom (60 × 30 × 30 cm(3)) representing the patient that was uniformly irradiated using a 3 mm spot diameter proton pencil beam with 10 cm modulation width, 19.95 cm distal beam range, and 10 × 10 cm(2) field size. RESULTS: Neutron spectrometry around the target volume showed two main components at the thermal and fast energy ranges. The study also revealed the large dependence of the energy distribution of neutrons, and consequently of out-of-field doses, on the primary beam direction (directional emission of intranuclear cascade neutrons) and energy (spectral composition of secondary neutrons). In addition, neutron mapping within the facility was conducted and showed the highest H(∗)(10) value of ∼ 51 μSv Gy(-1); this was measured at 1.15 m along the beam axis. H(∗)(10) values significantly decreased with distance and angular position with respect to beam axis falling below 2 nSv Gy(-1) at the entrance of the maze, at the door outside the room and below detection limit in the gantry control room, and at an adjacent room (<0.1 nSv Gy(-1)). Finally, the agreement on H(∗)(10) values between all detectors showed a direct dependence on neutron spectra at the measurement position. While conventional rem-counters (LB 6411, RadEye™ NL, NM2-458) underestimated the H(∗)(10) by up to a factor of 4, Hawk TEPCs and the WENDI-II range-extended detector were found to have good performance (within 20%) even at the highest neutron fluence and energy range. Meanwhile, secondary photon dose equivalents were found to be up to five times lower than neutrons; remaining nonetheless of concern to the patient. CONCLUSIONS: Extended-range BSS, TEPCs, and the WENDI-II enable accurate measurements of stray neutrons while other rem-counters are not appropriate considering the high-energy range of neutrons involved in proton therapy.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16010186
003      
CZ-PrNML
005      
20160415111408.0
007      
ta
008      
160408s2015 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1118/1.4916667 $2 doi
024    7_
$a 10.1118/1.4916667 $2 doi
035    __
$a (PubMed)25979049
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Farah, J $u Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Radioprotection de l'Homme, BP17, Fontenay-aux-Roses 92260, France.
245    10
$a Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems / $c J. Farah, V. Mares, M. Romero-Expósito, S. Trinkl, C. Domingo, V. Dufek, M. Klodowska, J. Kubancak, Ž. Knežević, M. Liszka, M. Majer, S. Miljanić, O. Ploc, K. Schinner, L. Stolarczyk, F. Trompier, M. Wielunski, P. Olko, RM. Harrison,
520    9_
$a PURPOSE: To characterize stray radiation around the target volume in scanning proton therapy and study the performance of active neutron monitors. METHODS: Working Group 9 of the European Radiation Dosimetry Group (EURADOS WG9-Radiation protection in medicine) carried out a large measurement campaign at the Trento Centro di Protonterapia (Trento, Italy) in order to determine the neutron spectra near the patient using two extended-range Bonner sphere spectrometry (BSS) systems. In addition, the work focused on acknowledging the performance of different commercial active dosimetry systems when measuring neutron ambient dose equivalents, H(∗)(10), at several positions inside (8 positions) and outside (3 positions) the treatment room. Detectors included three TEPCs--tissue equivalent proportional counters (Hawk type from Far West Technology, Inc.) and six rem-counters (WENDI-II, LB 6411, RadEye™ NL, a regular and an extended-range NM2B). Meanwhile, the photon component of stray radiation was deduced from the low-lineal energy transfer part of TEPC spectra or measured using a Thermo Scientific™ FH-40G survey meter. Experiments involved a water tank phantom (60 × 30 × 30 cm(3)) representing the patient that was uniformly irradiated using a 3 mm spot diameter proton pencil beam with 10 cm modulation width, 19.95 cm distal beam range, and 10 × 10 cm(2) field size. RESULTS: Neutron spectrometry around the target volume showed two main components at the thermal and fast energy ranges. The study also revealed the large dependence of the energy distribution of neutrons, and consequently of out-of-field doses, on the primary beam direction (directional emission of intranuclear cascade neutrons) and energy (spectral composition of secondary neutrons). In addition, neutron mapping within the facility was conducted and showed the highest H(∗)(10) value of ∼ 51 μSv Gy(-1); this was measured at 1.15 m along the beam axis. H(∗)(10) values significantly decreased with distance and angular position with respect to beam axis falling below 2 nSv Gy(-1) at the entrance of the maze, at the door outside the room and below detection limit in the gantry control room, and at an adjacent room (<0.1 nSv Gy(-1)). Finally, the agreement on H(∗)(10) values between all detectors showed a direct dependence on neutron spectra at the measurement position. While conventional rem-counters (LB 6411, RadEye™ NL, NM2-458) underestimated the H(∗)(10) by up to a factor of 4, Hawk TEPCs and the WENDI-II range-extended detector were found to have good performance (within 20%) even at the highest neutron fluence and energy range. Meanwhile, secondary photon dose equivalents were found to be up to five times lower than neutrons; remaining nonetheless of concern to the patient. CONCLUSIONS: Extended-range BSS, TEPCs, and the WENDI-II enable accurate measurements of stray neutrons while other rem-counters are not appropriate considering the high-energy range of neutrons involved in proton therapy.
650    _2
$a neutrony $7 D009502
650    _2
$a fantomy radiodiagnostické $7 D019047
650    _2
$a fotony $7 D017785
650    _2
$a protonová terapie $x přístrojové vybavení $x metody $7 D061766
650    _2
$a protony $7 D011522
650    _2
$a dávka záření $7 D011829
650    _2
$a radiometrie $x přístrojové vybavení $x metody $7 D011874
650    _2
$a spektrální analýza $x přístrojové vybavení $x metody $7 D013057
650    _2
$a voda $7 D014867
651    _2
$a Evropa $7 D005060
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Mares, V $u Helmholtz Zentrum München, Institute of Radiation Protection, Ingolstädter Landstraße 1, Neuherberg 85764, Germany.
700    1_
$a Romero-Expósito, M $u Departament de Física, Universitat Autònoma de Barcelona, Bellaterra E-08193, Spain.
700    1_
$a Trinkl, S $u Helmholtz Zentrum München, Institute of Radiation Protection, Ingolstädter Landstraße 1, Neuherberg 85764, Germany and Physik-Department, Technische Universität München, Garching 85748, Germany.
700    1_
$a Domingo, C $u Departament de Física, Universitat Autònoma de Barcelona, Bellaterra E-08193, Spain.
700    1_
$a Dufek, V $u Czech Technical University in Prague, FNSPE, Břehová 7, Prague 115 19, Czech Republic and National Radiation Protection Institute, Bartoškova 28, Prague 140 00, Czech Republic.
700    1_
$a Klodowska, M $u Institute of Nuclear Physics PAN, Radzikowskiego 152, Krakow 31-342, Poland.
700    1_
$a Kubancak, J $u Czech Technical University in Prague, FNSPE, Břehová 7, Prague 115 19, Czech Republic and Department of Radiation Dosimetry, Nuclear Physics Institute, Řež CZ-250 68, Czech Republic.
700    1_
$a Knežević, Ž $u Ruđer Bošković Institute, Bijenička c. 54, Zagreb 10000, Croatia.
700    1_
$a Liszka, M $u Institute of Nuclear Physics PAN, Radzikowskiego 152, Krakow 31-342, Poland.
700    1_
$a Majer, M $u Ruđer Bošković Institute, Bijenička c. 54, Zagreb 10000, Croatia.
700    1_
$a Miljanić, S $u Ruđer Bošković Institute, Bijenička c. 54, Zagreb 10000, Croatia.
700    1_
$a Ploc, O $u Department of Radiation Dosimetry, Nuclear Physics Institute, Řež CZ-250 68, Czech Republic.
700    1_
$a Schinner, K $u Helmholtz Zentrum München, Institute of Radiation Protection, Ingolstädter Landstraße 1, Neuherberg 85764, Germany.
700    1_
$a Stolarczyk, L $u Institute of Nuclear Physics PAN, Radzikowskiego 152, Krakow 31-342, Poland.
700    1_
$a Trompier, F $u Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Radioprotection de l'Homme, BP17, Fontenay-aux-Roses 92260, France.
700    1_
$a Wielunski, M $u Helmholtz Zentrum München, Institute of Radiation Protection, Ingolstädter Landstraße 1, Neuherberg 85764, Germany.
700    1_
$a Olko, P $u Institute of Nuclear Physics PAN, Radzikowskiego 152, Krakow 31-342, Poland.
700    1_
$a Harrison, R M $u University of Newcastle upon Tyne, Newcastle upon Tyne, Tyne and Wear NE1 7RU, United Kingdom.
773    0_
$w MED00003245 $t Medical physics $x 0094-2405 $g Roč. 42, č. 5 (2015), s. 2572-84
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25979049 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160408 $b ABA008
991    __
$a 20160415111453 $b ABA008
999    __
$a ok $b bmc $g 1113615 $s 934554
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 42 $c 5 $d 2572-84 $i 0094-2405 $m Medical physics $n Med Phys $x MED00003245
LZP    __
$a Pubmed-20160408

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...