-
Something wrong with this record ?
Performance breakdown in optimal stimulus decoding
. Lubomir Kostal, P. Lansky, S. Pilarski,
Language English Country England, Great Britain
Document type Evaluation Study, Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Action Potentials physiology MeSH
- Algorithms * MeSH
- Evoked Potentials physiology MeSH
- Humans MeSH
- Models, Neurological * MeSH
- Neurons physiology MeSH
- Perception physiology MeSH
- Computer Simulation MeSH
- Reproducibility of Results MeSH
- Sensitivity and Specificity MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
OBJECTIVE: One of the primary goals of neuroscience is to understand how neurons encode and process information about their environment. The problem is often approached indirectly by examining the degree to which the neuronal response reflects the stimulus feature of interest. APPROACH: In this context, the methods of signal estimation and detection theory provide the theoretical limits on the decoding accuracy with which the stimulus can be identified. The Cramér-Rao lower bound on the decoding precision is widely used, since it can be evaluated easily once the mathematical model of the stimulus-response relationship is determined. However, little is known about the behavior of different decoding schemes with respect to the bound if the neuronal population size is limited. MAIN RESULTS: We show that under broad conditions the optimal decoding displays a threshold-like shift in performance in dependence on the population size. The onset of the threshold determines a critical range where a small increment in size, signal-to-noise ratio or observation time yields a dramatic gain in the decoding precision. SIGNIFICANCE: We demonstrate the existence of such threshold regions in early auditory and olfactory information coding. We discuss the origin of the threshold effect and its impact on the design of effective coding approaches in terms of relevant population size.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16010229
- 003
- CZ-PrNML
- 005
- 20160520111546.0
- 007
- ta
- 008
- 160408s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1088/1741-2560/12/3/036012 $2 doi
- 024 7_
- $a 10.1088/1741-2560/12/3/036012 $2 doi
- 035 __
- $a (PubMed)25946561
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Lubomir Kostal, $u Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 14220 Prague 4, Czech Republic.
- 245 10
- $a Performance breakdown in optimal stimulus decoding / $c . Lubomir Kostal, P. Lansky, S. Pilarski,
- 520 9_
- $a OBJECTIVE: One of the primary goals of neuroscience is to understand how neurons encode and process information about their environment. The problem is often approached indirectly by examining the degree to which the neuronal response reflects the stimulus feature of interest. APPROACH: In this context, the methods of signal estimation and detection theory provide the theoretical limits on the decoding accuracy with which the stimulus can be identified. The Cramér-Rao lower bound on the decoding precision is widely used, since it can be evaluated easily once the mathematical model of the stimulus-response relationship is determined. However, little is known about the behavior of different decoding schemes with respect to the bound if the neuronal population size is limited. MAIN RESULTS: We show that under broad conditions the optimal decoding displays a threshold-like shift in performance in dependence on the population size. The onset of the threshold determines a critical range where a small increment in size, signal-to-noise ratio or observation time yields a dramatic gain in the decoding precision. SIGNIFICANCE: We demonstrate the existence of such threshold regions in early auditory and olfactory information coding. We discuss the origin of the threshold effect and its impact on the design of effective coding approaches in terms of relevant population size.
- 650 _2
- $a akční potenciály $x fyziologie $7 D000200
- 650 12
- $a algoritmy $7 D000465
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a evokované potenciály $x fyziologie $7 D005071
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a modely neurologické $7 D008959
- 650 _2
- $a neurony $x fyziologie $7 D009474
- 650 _2
- $a percepce $x fyziologie $7 D010465
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a senzitivita a specificita $7 D012680
- 655 _2
- $a hodnotící studie $7 D023362
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Lansky, Petr
- 700 1_
- $a Pilarski, Stevan
- 773 0_
- $w MED00188777 $t Journal of neural engineering $x 1741-2552 $g Roč. 12, č. 3 (2015), s. 036012
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25946561 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160408 $b ABA008
- 991 __
- $a 20160520111659 $b ABA008
- 999 __
- $a ok $b bmc $g 1113658 $s 934597
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 12 $c 3 $d 036012 $e 20150506 $i 1741-2552 $m Journal of neural engineering $n J Neural Eng $x MED00188777
- LZP __
- $a Pubmed-20160408