• Je něco špatně v tomto záznamu ?

Pre-amplification in the context of high-throughput qPCR gene expression experiment

V. Korenková, J. Scott, V. Novosadová, M. Jindřichová, L. Langerová, D. Švec, M. Šídová, R. Sjöback,

. 2015 ; 16 (-) : 5. [pub] 20150311

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16010311

BACKGROUND: With the introduction of the first high-throughput qPCR instrument on the market it became possible to perform thousands of reactions in a single run compared to the previous hundreds. In the high-throughput reaction, only limited volumes of highly concentrated cDNA or DNA samples can be added. This necessity can be solved by pre-amplification, which became a part of the high-throughput experimental workflow. Here, we focused our attention on the limits of the specific target pre-amplification reaction and propose the optimal, general setup for gene expression experiment using BioMark instrument (Fluidigm). RESULTS: For evaluating different pre-amplification factors following conditions were combined: four human blood samples from healthy donors and five transcripts having high to low expression levels; each cDNA sample was pre-amplified at four cycles (15, 18, 21, and 24) and five concentrations (equivalent to 0.078 ng, 0.32 ng, 1.25 ng, 5 ng, and 20 ng of total RNA). Factors identified as critical for a success of cDNA pre-amplification were cycle of pre-amplification, total RNA concentration, and type of gene. The selected pre-amplification reactions were further tested for optimal Cq distribution in a BioMark Array. The following concentrations combined with pre-amplification cycles were optimal for good quality samples: 20 ng of total RNA with 15 cycles of pre-amplification, 20x and 40x diluted; and 5 ng and 20 ng of total RNA with 18 cycles of pre-amplification, both 20x and 40x diluted. CONCLUSIONS: We set up upper limits for the bulk gene expression experiment using gene expression Dynamic Array and provided an easy-to-obtain tool for measuring of pre-amplification success. We also showed that variability of the pre-amplification, introduced into the experimental workflow of reverse transcription-qPCR, is lower than variability caused by the reverse transcription step.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16010311
003      
CZ-PrNML
005      
20160412122356.0
007      
ta
008      
160408s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12867-015-0033-9 $2 doi
024    7_
$a 10.1186/s12867-015-0033-9 $2 doi
035    __
$a (PubMed)25888347
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Korenková, Vlasta $u Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic. vlasta.korenkova@ibt.cas.cz.
245    10
$a Pre-amplification in the context of high-throughput qPCR gene expression experiment / $c V. Korenková, J. Scott, V. Novosadová, M. Jindřichová, L. Langerová, D. Švec, M. Šídová, R. Sjöback,
520    9_
$a BACKGROUND: With the introduction of the first high-throughput qPCR instrument on the market it became possible to perform thousands of reactions in a single run compared to the previous hundreds. In the high-throughput reaction, only limited volumes of highly concentrated cDNA or DNA samples can be added. This necessity can be solved by pre-amplification, which became a part of the high-throughput experimental workflow. Here, we focused our attention on the limits of the specific target pre-amplification reaction and propose the optimal, general setup for gene expression experiment using BioMark instrument (Fluidigm). RESULTS: For evaluating different pre-amplification factors following conditions were combined: four human blood samples from healthy donors and five transcripts having high to low expression levels; each cDNA sample was pre-amplified at four cycles (15, 18, 21, and 24) and five concentrations (equivalent to 0.078 ng, 0.32 ng, 1.25 ng, 5 ng, and 20 ng of total RNA). Factors identified as critical for a success of cDNA pre-amplification were cycle of pre-amplification, total RNA concentration, and type of gene. The selected pre-amplification reactions were further tested for optimal Cq distribution in a BioMark Array. The following concentrations combined with pre-amplification cycles were optimal for good quality samples: 20 ng of total RNA with 15 cycles of pre-amplification, 20x and 40x diluted; and 5 ng and 20 ng of total RNA with 18 cycles of pre-amplification, both 20x and 40x diluted. CONCLUSIONS: We set up upper limits for the bulk gene expression experiment using gene expression Dynamic Array and provided an easy-to-obtain tool for measuring of pre-amplification success. We also showed that variability of the pre-amplification, introduced into the experimental workflow of reverse transcription-qPCR, is lower than variability caused by the reverse transcription step.
650    _2
$a stanovení celkové genové exprese $x přístrojové vybavení $x metody $7 D020869
650    _2
$a zdraví dobrovolníci pro lékařské studie $7 D064368
650    _2
$a lidé $7 D006801
650    _2
$a messenger RNA $x analýza $x krev $x metabolismus $7 D012333
650    _2
$a polymerázová řetězová reakce s reverzní transkripcí $x přístrojové vybavení $x metody $7 D020133
650    _2
$a senzitivita a specificita $7 D012680
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Scott, Justin $u QFAB Bioinformatics, University of Queensland - St Lucia QLD, Brisbane, Australia. j.scott@qfab.org.
700    1_
$a Novosadová, Vendula $u Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic. vendula.novosadova@ibt.cas.cz.
700    1_
$a Jindřichová, Marie $u Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic. M.Jindrichova@seznam.cz.
700    1_
$a Langerová, Lucie $u Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic. lucie.langerova@ibt.cas.cz.
700    1_
$a Švec, David $u Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic. david.svec@ibt.cas.cz.
700    1_
$a Šídová, Monika $u Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic. monika.sidova@ibt.cas.cz.
700    1_
$a Sjöback, Robert $u TATAA Biocenter, Göthenburg, Sweden. robert.sjoback@tataa.com.
773    0_
$w MED00008192 $t BMC molecular biology $x 1471-2199 $g Roč. 16, č. - (2015), s. 5
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25888347 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160408 $b ABA008
991    __
$a 20160412122440 $b ABA008
999    __
$a ok $b bmc $g 1113740 $s 934679
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 16 $c - $d 5 $e 20150311 $i 1471-2199 $m BMC molecular biology $n BMC Mol Biol $x MED00008192
LZP    __
$a Pubmed-20160408

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...