-
Something wrong with this record ?
Injectable nanoparticle-loaded hydrogel system for local delivery of sodium alendronate
U. Posadowska, M. Parizek, E. Filova, M. Wlodarczyk-Biegun, M. Kamperman, L. Bacakova, E. Pamula,
Language English Country Netherlands
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
NT13297
MZ0
CEP Register
- MeSH
- Alendronate administration & dosage chemistry MeSH
- Polysaccharides, Bacterial chemistry MeSH
- Cell Differentiation drug effects MeSH
- Chemistry, Pharmaceutical MeSH
- Technology, Pharmaceutical methods MeSH
- Hydrogels MeSH
- Bone Density Conservation Agents administration & dosage chemistry MeSH
- Injections MeSH
- Kinetics MeSH
- Lactic Acid chemistry MeSH
- Polyglycolic Acid chemistry MeSH
- Humans MeSH
- RANK Ligand pharmacology MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Nanoparticles * MeSH
- Nanotechnology MeSH
- Drug Carriers * MeSH
- Osteoblasts drug effects metabolism MeSH
- Osteoclasts drug effects metabolism MeSH
- RAW 264.7 Cells MeSH
- Rheology MeSH
- Solubility MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Systemic administration of bisphosphonates, e.g. sodium alendronate (Aln) is characterized by extremely low bioavailability and high toxicity. To omit aforementioned drawbacks an injectable system for the intra-bone delivery of Aln based on Aln-loaded nanoparticles (NPs-Aln) suspended in a hydrogel matrix (gellan gum, GG) was developed. Aln was encapsulated in poly(lactide-co-glycolide) (PLGA 85:15) by solid-oil-water emulsification. Drug release tests showed that within 25 days all the encapsulated drug was released from NPs-Aln and the release rate was highest at the beginning and decreased with time. In contrast, by suspending NPs-Aln in a GG matrix, the release rate was significantly lower and more constant in time. The GG-NPs-Aln system was engineered to be easily injectable and was able to reassemble its structure after extrusion as shown by rheological measurements. Invitro studies showed that the GG-NPs-Aln was cytocompatible with MG-63 osteoblast-like cells and it inhibited RANKL-mediated osteoclastic differentiation of RAW 264.7 cells. The injectability, the sustained local delivery of small doses of Aln and the biological activity render the GG-NPs-Aln system promising for the local treatment of osteoporosis and other bone tissue disorders.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16010483
- 003
- CZ-PrNML
- 005
- 20191127091344.0
- 007
- ta
- 008
- 160408s2015 ne f 000 0|engg|
- 009
- AR
- 024 7_
- $a 10.1016/j.ijpharm.2015.03.003 $2 doi
- 024 7_
- $a 10.1016/j.ijpharm.2015.03.003 $2 doi
- 035 __
- $a (PubMed)25747455
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Posadowska, Urszula $u AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, al. A. Mickiewicza 30, 30-059 Krakow, Poland. Electronic address: uposadow@agh.edu.pl.
- 245 10
- $a Injectable nanoparticle-loaded hydrogel system for local delivery of sodium alendronate / $c U. Posadowska, M. Parizek, E. Filova, M. Wlodarczyk-Biegun, M. Kamperman, L. Bacakova, E. Pamula,
- 520 9_
- $a Systemic administration of bisphosphonates, e.g. sodium alendronate (Aln) is characterized by extremely low bioavailability and high toxicity. To omit aforementioned drawbacks an injectable system for the intra-bone delivery of Aln based on Aln-loaded nanoparticles (NPs-Aln) suspended in a hydrogel matrix (gellan gum, GG) was developed. Aln was encapsulated in poly(lactide-co-glycolide) (PLGA 85:15) by solid-oil-water emulsification. Drug release tests showed that within 25 days all the encapsulated drug was released from NPs-Aln and the release rate was highest at the beginning and decreased with time. In contrast, by suspending NPs-Aln in a GG matrix, the release rate was significantly lower and more constant in time. The GG-NPs-Aln system was engineered to be easily injectable and was able to reassemble its structure after extrusion as shown by rheological measurements. Invitro studies showed that the GG-NPs-Aln was cytocompatible with MG-63 osteoblast-like cells and it inhibited RANKL-mediated osteoclastic differentiation of RAW 264.7 cells. The injectability, the sustained local delivery of small doses of Aln and the biological activity render the GG-NPs-Aln system promising for the local treatment of osteoporosis and other bone tissue disorders.
- 650 _2
- $a alendronát $x aplikace a dávkování $x chemie $7 D019386
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a inhibitory kostní resorpce $x aplikace a dávkování $x chemie $7 D050071
- 650 _2
- $a buněčná diferenciace $x účinky léků $7 D002454
- 650 _2
- $a nádorové buněčné linie $7 D045744
- 650 _2
- $a farmaceutická chemie $7 D002626
- 650 12
- $a nosiče léků $7 D004337
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a hydrogely $7 D020100
- 650 _2
- $a injekce $7 D007267
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a kyselina mléčná $x chemie $7 D019344
- 650 _2
- $a myši $7 D051379
- 650 12
- $a nanočástice $7 D053758
- 650 _2
- $a nanotechnologie $7 D036103
- 650 _2
- $a osteoblasty $x účinky léků $x metabolismus $7 D010006
- 650 _2
- $a osteoklasty $x účinky léků $x metabolismus $7 D010010
- 650 _2
- $a kyselina polyglykolová $x chemie $7 D011100
- 650 _2
- $a bakteriální polysacharidy $x chemie $7 D011135
- 650 _2
- $a ligand RANK $x farmakologie $7 D053245
- 650 _2
- $a RAW 264.7 buňky $7 D000067996
- 650 _2
- $a reologie $7 D012212
- 650 _2
- $a rozpustnost $7 D012995
- 650 _2
- $a farmaceutická technologie $x metody $7 D013678
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Pařízek, Martin $u Academy of Sciences of the Czech Republic, Institute of Physiology, Department of Biomaterials and Tissue Engineering, Videnska 1083, 14220 Prague 4-Krc, Czech Republic. Electronic address: parizek@biomed.cas.cz. $7 xx0137109
- 700 1_
- $a Filová, Elena, $u Academy of Sciences of the Czech Republic, Institute of Physiology, Department of Biomaterials and Tissue Engineering, Videnska 1083, 14220 Prague 4-Krc, Czech Republic. Electronic address: filova@biomed.cas.cz. $d 1973- $7 xx0074200
- 700 1_
- $a Wlodarczyk-Biegun, Malgorzata $u Wageningen University, Laboratory of Physical Chemistry and Colloid Science, Dreijenplein 6, 6703HB, Wageningen, The Netherlands. Electronic address: gosia.wlodarczyk-biegun@wur.nl.
- 700 1_
- $a Kamperman, Marleen $u Wageningen University, Laboratory of Physical Chemistry and Colloid Science, Dreijenplein 6, 6703HB, Wageningen, The Netherlands. Electronic address: marleen.kamperman@wur.nl.
- 700 1_
- $a Bačáková, Lucie, $u Academy of Sciences of the Czech Republic, Institute of Physiology, Department of Biomaterials and Tissue Engineering, Videnska 1083, 14220 Prague 4-Krc, Czech Republic. Electronic address: lucy@biomed.cas.cz. $d 1958- $7 xx0070525
- 700 1_
- $a Pamula, Elzbieta $u AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, al. A. Mickiewicza 30, 30-059 Krakow, Poland. Electronic address: epamula@agh.edu.pl.
- 773 0_
- $w MED00002359 $t International journal of pharmaceutics $x 1873-3476 $g Roč. 485, č. 1-2 (2015), s. 31-40
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25747455 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160408 $b ABA008
- 991 __
- $a 20191127091631 $b ABA008
- 999 __
- $a ok $b bmc $g 1113912 $s 934851
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 485 $c 1-2 $d 31-40 $e 20150304 $i 1873-3476 $m International journal of pharmaceutics $n Int. j. pharm. $x MED00002359
- GRA __
- $a NT13297 $p MZ0
- LZP __
- $a Pubmed-20160408