• Je něco špatně v tomto záznamu ?

Oxidative Stress Resistance in Metastatic Prostate Cancer: Renewal by Self-Eating

J. Balvan, J. Gumulec, M. Raudenska, A. Krizova, P. Stepka, P. Babula, R. Kizek, V. Adam, M. Masarik,

. 2015 ; 10 (12) : e0145016. [pub] 20151215

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16020088

Resistant cancer phenotype is a key obstacle in the successful therapy of prostate cancer. The primary aim of our study was to explore resistance mechanisms in the advanced type of prostate cancer cells (PC-3) and to clarify the role of autophagy in these processes. We performed time-lapse experiment (48 hours) with ROS generating plumbagin by using multimodal holographic microscope. Furthermore, we also performed the flow-cytometric analysis and the qRT-PCR gene expression analysis at 12 selected time points. TEM and confocal microscopy were used to verify the results. We found out that autophagy (namely mitophagy) is an important resistance mechanism. The major ROS producing mitochondria were coated by an autophagic membrane derived from endoplasmic reticulum and degraded. According to our results, increasing ROS resistance may be also accompanied by increased average cell size and polyploidization, which seems to be key resistance mechanism when connected with an escape from senescence. Many different types of cell-cell interactions were recorded including entosis, vesicular transfer, eating of dead or dying cells, and engulfment and cannibalism of living cells. Entosis was disclosed as a possible mechanism of polyploidization and enabled the long-term survival of cancer cells. Significantly reduced cell motility was found after the plumbagin treatment. We also found an extensive induction of pluripotency genes expression (NANOG, SOX2, and POU5F1) at the time-point of 20 hours. We suppose, that overexpression of pluripotency genes in the portion of prostate tumour cell population exposed to ROS leads to higher developmental plasticity and capability to faster respond to changes in the extracellular environment that could ultimately lead to an alteration of cell fate.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16020088
003      
CZ-PrNML
005      
20160722115929.0
007      
ta
008      
160722s2015 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0145016 $2 doi
024    7_
$a 10.1371/journal.pone.0145016 $2 doi
035    __
$a (PubMed)26671576
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Balvan, Jan $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic. Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic.
245    10
$a Oxidative Stress Resistance in Metastatic Prostate Cancer: Renewal by Self-Eating / $c J. Balvan, J. Gumulec, M. Raudenska, A. Krizova, P. Stepka, P. Babula, R. Kizek, V. Adam, M. Masarik,
520    9_
$a Resistant cancer phenotype is a key obstacle in the successful therapy of prostate cancer. The primary aim of our study was to explore resistance mechanisms in the advanced type of prostate cancer cells (PC-3) and to clarify the role of autophagy in these processes. We performed time-lapse experiment (48 hours) with ROS generating plumbagin by using multimodal holographic microscope. Furthermore, we also performed the flow-cytometric analysis and the qRT-PCR gene expression analysis at 12 selected time points. TEM and confocal microscopy were used to verify the results. We found out that autophagy (namely mitophagy) is an important resistance mechanism. The major ROS producing mitochondria were coated by an autophagic membrane derived from endoplasmic reticulum and degraded. According to our results, increasing ROS resistance may be also accompanied by increased average cell size and polyploidization, which seems to be key resistance mechanism when connected with an escape from senescence. Many different types of cell-cell interactions were recorded including entosis, vesicular transfer, eating of dead or dying cells, and engulfment and cannibalism of living cells. Entosis was disclosed as a possible mechanism of polyploidization and enabled the long-term survival of cancer cells. Significantly reduced cell motility was found after the plumbagin treatment. We also found an extensive induction of pluripotency genes expression (NANOG, SOX2, and POU5F1) at the time-point of 20 hours. We suppose, that overexpression of pluripotency genes in the portion of prostate tumour cell population exposed to ROS leads to higher developmental plasticity and capability to faster respond to changes in the extracellular environment that could ultimately lead to an alteration of cell fate.
650    _2
$a autofagie $x účinky léků $7 D001343
650    _2
$a mezibuněčná komunikace $x účinky léků $7 D002450
650    _2
$a nádorové buněčné linie $7 D045744
650    12
$a buněčná sebeobnova $x účinky léků $7 D000066673
650    _2
$a velikost buňky $x účinky léků $7 D048429
650    _2
$a viabilita buněk $x účinky léků $7 D002470
650    _2
$a endoplazmatické retikulum $x účinky léků $x metabolismus $7 D004721
650    _2
$a entóza $x účinky léků $7 D057691
650    _2
$a průtoková cytometrie $7 D005434
650    _2
$a stanovení celkové genové exprese $7 D020869
650    _2
$a regulace genové exprese u nádorů $x účinky léků $7 D015972
650    _2
$a lidé $7 D006801
650    _2
$a inhibiční koncentrace 50 $7 D020128
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a mitofagie $x účinky léků $7 D063306
650    _2
$a naftochinony $x farmakologie $7 D009285
650    _2
$a metastázy nádorů $7 D009362
650    12
$a oxidační stres $x účinky léků $7 D018384
650    _2
$a analýza hlavních komponent $7 D025341
650    _2
$a nádory prostaty $x genetika $x patologie $7 D011471
650    _2
$a reaktivní formy kyslíku $x metabolismus $7 D017382
650    _2
$a časosběrné zobrazování $7 D059008
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Gumulec, Jaromir $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic. Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic.
700    1_
$a Raudenska, Martina $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic. Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic.
700    1_
$a Krizova, Aneta $u Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic. TESCAN Brno, s.r.o., Brno, Czech Republic.
700    1_
$a Stepka, Petr $u Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic.
700    1_
$a Babula, Petr $u Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic.
700    1_
$a Kizek, Rene $u Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic. Department of Chemistry and Biochemistry, Mendel University in Brno / Zemedelska 1, CZ-613 00, Brno, Czech Republic.
700    1_
$a Adam, Vojtěch $u Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic. Department of Chemistry and Biochemistry, Mendel University in Brno / Zemedelska 1, CZ-613 00, Brno, Czech Republic. $7 xx0064599
700    1_
$a Masarik, Michal $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 10, č. 12 (2015), s. e0145016
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26671576 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160722 $b ABA008
991    __
$a 20160722120144 $b ABA008
999    __
$a ok $b bmc $g 1154758 $s 944616
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 10 $c 12 $d e0145016 $e 20151215 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20160722

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...