• Je něco špatně v tomto záznamu ?

Markers of oxidative damage of nucleic acids and proteins among workers exposed to TiO2 (nano) particles

D. Pelclova, V. Zdimal, Z. Fenclova, S. Vlckova, F. Turci, I. Corazzari, P. Kacer, J. Schwarz, N. Zikova, O. Makes, K. Syslova, M. Komarc, J. Belacek, T. Navratil, M. Machajova, S. Zakharov,

. 2016 ; 73 (2) : 110-8. [pub] 20151207

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16020101
E-zdroje Online Plný text

NLK ProQuest Central od 1994-01-01 do Před 6 měsíci
Nursing & Allied Health Database (ProQuest) od 1994-01-01 do Před 6 měsíci
Health & Medicine (ProQuest) od 1994-01-01 do Před 6 měsíci
Public Health Database (ProQuest) od 1994-01-01 do Před 6 měsíci

OBJECTIVE: The use of nanotechnology is growing enormously and occupational physicians have an increasing interest in evaluating potential hazards and finding biomarkers of effect in workers exposed to nanoparticles. METHODS: A study was carried out with 36 workers exposed to (nano)TiO2 pigment and 45 controls. Condensate (EBC) titanium and markers of oxidation of nucleic acids (including 8-hydroxy-2-deoxyguanosine (8-OHdG), 8-hydroxyguanosine (8-OHG), 5-hydroxymethyl uracil (5-OHMeU)) and proteins (such as o-tyrosine (o-Tyr), 3-chlorotyrosine (3-ClTyr) and 3-nitrotyrosine (3-NOTyr)) were analysed from samples of their exhaled breath. RESULTS: In the production workshops, the median total mass 2012 and 2013 TiO2 concentrations were 0.65 and 0.40 mg/m(3), respectively. The median numbers of concentrations measured by the scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) were 1.98 × 10(4) and 2.32 × 10(4) particles/cm(3), respectively; and about 80% of those particles were smaller than 100 nm in diameter. In the research workspace, lower aerosol concentrations (0.16 mg/m(3) and 1.32 × 10(4) particles/cm(3)) were found. Titanium in the EBC was significantly higher in production workers (p<0.001) than in research workers and unexposed controls. Accordingly, most EBC oxidative stress markers, including in the preshift samples, were higher in production workers than in the two other groups. Multiple regression analysis confirmed an association between the production of TiO2 and the levels of studied biomarkers. CONCLUSIONS: The concentration of titanium in EBC may serve as a direct exposure marker in workers producing TiO2 pigment; the markers of oxidative stress reflect the local biological effect of (nano)TiO2 in the respiratory tract of the exposed workers.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16020101
003      
CZ-PrNML
005      
20250204152441.0
007      
ta
008      
160722s2016 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1136/oemed-2015-103161 $2 doi
024    7_
$a 10.1136/oemed-2015-103161 $2 doi
035    __
$a (PubMed)26644454
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Pelclova, D $u First Faculty of Medicine, Department of Occupational Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic.
245    10
$a Markers of oxidative damage of nucleic acids and proteins among workers exposed to TiO2 (nano) particles / $c D. Pelclova, V. Zdimal, Z. Fenclova, S. Vlckova, F. Turci, I. Corazzari, P. Kacer, J. Schwarz, N. Zikova, O. Makes, K. Syslova, M. Komarc, J. Belacek, T. Navratil, M. Machajova, S. Zakharov,
520    9_
$a OBJECTIVE: The use of nanotechnology is growing enormously and occupational physicians have an increasing interest in evaluating potential hazards and finding biomarkers of effect in workers exposed to nanoparticles. METHODS: A study was carried out with 36 workers exposed to (nano)TiO2 pigment and 45 controls. Condensate (EBC) titanium and markers of oxidation of nucleic acids (including 8-hydroxy-2-deoxyguanosine (8-OHdG), 8-hydroxyguanosine (8-OHG), 5-hydroxymethyl uracil (5-OHMeU)) and proteins (such as o-tyrosine (o-Tyr), 3-chlorotyrosine (3-ClTyr) and 3-nitrotyrosine (3-NOTyr)) were analysed from samples of their exhaled breath. RESULTS: In the production workshops, the median total mass 2012 and 2013 TiO2 concentrations were 0.65 and 0.40 mg/m(3), respectively. The median numbers of concentrations measured by the scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) were 1.98 × 10(4) and 2.32 × 10(4) particles/cm(3), respectively; and about 80% of those particles were smaller than 100 nm in diameter. In the research workspace, lower aerosol concentrations (0.16 mg/m(3) and 1.32 × 10(4) particles/cm(3)) were found. Titanium in the EBC was significantly higher in production workers (p<0.001) than in research workers and unexposed controls. Accordingly, most EBC oxidative stress markers, including in the preshift samples, were higher in production workers than in the two other groups. Multiple regression analysis confirmed an association between the production of TiO2 and the levels of studied biomarkers. CONCLUSIONS: The concentration of titanium in EBC may serve as a direct exposure marker in workers producing TiO2 pigment; the markers of oxidative stress reflect the local biological effect of (nano)TiO2 in the respiratory tract of the exposed workers.
650    _2
$a dospělí $7 D000328
650    _2
$a biologické markery $x metabolismus $7 D015415
650    _2
$a dechové testy $7 D001944
650    _2
$a poškození DNA $7 D004249
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a nanočástice $x škodlivé účinky $7 D053758
650    _2
$a nukleové kyseliny $x metabolismus $7 D009696
650    _2
$a pracovní expozice $x škodlivé účinky $7 D016273
650    _2
$a oxidace-redukce $7 D010084
650    _2
$a oxidační stres $x účinky léků $7 D018384
650    _2
$a velikost částic $7 D010316
650    _2
$a pevné částice $x škodlivé účinky $7 D052638
650    _2
$a proteiny $x metabolismus $7 D011506
650    _2
$a titan $x škodlivé účinky $7 D014025
650    _2
$a práce $7 D014937
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Zdimal, V $u Institute of Chemical Process Fundamentals of the AS CR, vvi, Prague, Czech Republic.
700    1_
$a Fenclová, Zdeňka, $d 1958- $u First Faculty of Medicine, Department of Occupational Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic. $7 xx0074215
700    1_
$a Vlckova, S $u First Faculty of Medicine, Department of Occupational Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic.
700    1_
$a Turci, F $u Interdepartmental Centre "G Scansetti" for Studies on Asbestos and Other Toxic Particulates and NIS Interdepartmental Centre for Nanostructured Interfaces and Surfaces, University of Torino, Torino, Italy.
700    1_
$a Corazzari, I $u Interdepartmental Centre "G Scansetti" for Studies on Asbestos and Other Toxic Particulates and NIS Interdepartmental Centre for Nanostructured Interfaces and Surfaces, University of Torino, Torino, Italy.
700    1_
$a Kacer, P $u Institute of Chemical Technology, Prague, Czech Republic.
700    1_
$a Schwarz, J $u Institute of Chemical Process Fundamentals of the AS CR, vvi, Prague, Czech Republic.
700    1_
$a Zikova, N
700    1_
$a Makes, O $u Institute of Chemical Process Fundamentals of the AS CR, vvi, Prague, Czech Republic Institute of Chemical Process Fundamentals of the AS CR, vvi, Prague, Czech Republic.
700    1_
$a Syslova, K $u Institute of Chemical Technology, Prague, Czech Republic.
700    1_
$a Komarc, M $u First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Institute of Biophysics and Informatics, Prague, Czech Republic Faculty of Physical Education and Sport, Department of Kinanthropology and Humanities, Charles University in Prague, Prague, Czech Republic.
700    1_
$a Belacek, J $u First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Institute of Biophysics and Informatics, Prague, Czech Republic.
700    1_
$a Navratil, T $u J Heyrovský Institute of Physical Chemistry of the AS CR, vvi, Prague, Czech Republic First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Institute of Medical Biochemistry and Laboratory Diagnostics, Prague, Czech Republic.
700    1_
$a Machajova, M $u Faculty of Health Sciences and Social Work, Department of Public Health, Trnava University, Trnava, Slovakia.
700    1_
$a Zakharov, S $u First Faculty of Medicine, Department of Occupational Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic.
773    0_
$w MED00003578 $t Occupational and environmental medicine $x 1470-7926 $g Roč. 73, č. 2 (2016), s. 110-8
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26644454 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160722 $b ABA008
991    __
$a 20250204152441 $b ABA008
999    __
$a ok $b bmc $g 1154771 $s 944629
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 73 $c 2 $d 110-8 $e 20151207 $i 1470-7926 $m Occupational and environmental medicine $n Occup Environ Med $x MED00003578
LZP    __
$a Pubmed-20160722

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...