Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Formation and disruption of tonotopy in a large-scale model of the auditory cortex

M. Tomková, J. Tomek, O. Novák, O. Zelenka, J. Syka, C. Brom,

. 2015 ; 39 (2) : 131-53. [pub] 20150907

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16020318
E-zdroje Online Plný text

NLK ProQuest Central od 1999-01-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 2010-02-01 do Před 1 rokem
Health & Medicine (ProQuest) od 1999-01-01 do Před 1 rokem
Psychology Database (ProQuest) od 1999-01-01 do Před 1 rokem

There is ample experimental evidence describing changes of tonotopic organisation in the auditory cortex due to environmental factors. In order to uncover the underlying mechanisms, we designed a large-scale computational model of the auditory cortex. The model has up to 100 000 Izhikevich's spiking neurons of 17 different types, almost 21 million synapses, which are evolved according to Spike-Timing-Dependent Plasticity (STDP) and have an architecture akin to existing observations. Validation of the model revealed alternating synchronised/desynchronised states and different modes of oscillatory activity. We provide insight into these phenomena via analysing the activity of neuronal subtypes and testing different causal interventions into the simulation. Our model is able to produce experimental predictions on a cell type basis. To study the influence of environmental factors on the tonotopy, different types of auditory stimulations during the evolution of the network were modelled and compared. We found that strong white noise resulted in completely disrupted tonotopy, which is consistent with in vivo experimental observations. Stimulation with pure tones or spontaneous activity led to a similar degree of tonotopy as in the initial state of the network. Interestingly, weak white noise led to a substantial increase in tonotopy. As the STDP was the only mechanism of plasticity in our model, our results suggest that STDP is a sufficient condition for the emergence and disruption of tonotopy under various types of stimuli. The presented large-scale model of the auditory cortex and the core simulator, SUSNOIMAC, have been made publicly available.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16020318
003      
CZ-PrNML
005      
20181029085430.0
007      
ta
008      
160722s2015 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s10827-015-0568-2 $2 doi
024    7_
$a 10.1007/s10827-015-0568-2 $2 doi
035    __
$a (PubMed)26344164
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Tomková, Markéta $u Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic. marketa.tomkova@stcatz.ox.ac.uk. Life Sciences Interface Doctoral Training Centre, University of Oxford, Oxford, UK. marketa.tomkova@stcatz.ox.ac.uk.
245    10
$a Formation and disruption of tonotopy in a large-scale model of the auditory cortex / $c M. Tomková, J. Tomek, O. Novák, O. Zelenka, J. Syka, C. Brom,
520    9_
$a There is ample experimental evidence describing changes of tonotopic organisation in the auditory cortex due to environmental factors. In order to uncover the underlying mechanisms, we designed a large-scale computational model of the auditory cortex. The model has up to 100 000 Izhikevich's spiking neurons of 17 different types, almost 21 million synapses, which are evolved according to Spike-Timing-Dependent Plasticity (STDP) and have an architecture akin to existing observations. Validation of the model revealed alternating synchronised/desynchronised states and different modes of oscillatory activity. We provide insight into these phenomena via analysing the activity of neuronal subtypes and testing different causal interventions into the simulation. Our model is able to produce experimental predictions on a cell type basis. To study the influence of environmental factors on the tonotopy, different types of auditory stimulations during the evolution of the network were modelled and compared. We found that strong white noise resulted in completely disrupted tonotopy, which is consistent with in vivo experimental observations. Stimulation with pure tones or spontaneous activity led to a similar degree of tonotopy as in the initial state of the network. Interestingly, weak white noise led to a substantial increase in tonotopy. As the STDP was the only mechanism of plasticity in our model, our results suggest that STDP is a sufficient condition for the emergence and disruption of tonotopy under various types of stimuli. The presented large-scale model of the auditory cortex and the core simulator, SUSNOIMAC, have been made publicly available.
650    _2
$a akustická stimulace $7 D000161
650    _2
$a akční potenciály $x fyziologie $7 D000200
650    _2
$a zvířata $7 D000818
650    _2
$a sluchové korové centrum $x cytologie $x fyziologie $7 D001303
650    12
$a počítačová simulace $7 D003198
650    _2
$a lidé $7 D006801
650    12
$a modely neurologické $7 D008959
650    _2
$a nervová síť $x fyziologie $7 D009415
650    _2
$a neurony $x fyziologie $7 D009474
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Tomek, Jakub $u Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic. Life Sciences Interface Doctoral Training Centre, University of Oxford, Oxford, UK.
700    1_
$a Novák, Ondřej $u Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic. ondrej.novak@biomed.cas.cz.
700    1_
$a Zelenka, Ondřej $u Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
700    1_
$a Syka, Josef $u Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
700    1_
$a Brom, Cyril, $u Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic. $d 1978- $7 xx0228638
773    0_
$w MED00007695 $t Journal of computational neuroscience $x 1573-6873 $g Roč. 39, č. 2 (2015), s. 131-53
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26344164 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160722 $b ABA008
991    __
$a 20181029085945 $b ABA008
999    __
$a ok $b bmc $g 1154988 $s 944846
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 39 $c 2 $d 131-53 $e 20150907 $i 1573-6873 $m Journal of computational neuroscience $n J Comput Neurosci $x MED00007695
LZP    __
$a Pubmed-20160722

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...