-
Je něco špatně v tomto záznamu ?
Formation and disruption of tonotopy in a large-scale model of the auditory cortex
M. Tomková, J. Tomek, O. Novák, O. Zelenka, J. Syka, C. Brom,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
ProQuest Central
od 1999-01-01 do Před 1 rokem
Medline Complete (EBSCOhost)
od 2010-02-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1999-01-01 do Před 1 rokem
Psychology Database (ProQuest)
od 1999-01-01 do Před 1 rokem
- MeSH
- akční potenciály fyziologie MeSH
- akustická stimulace MeSH
- lidé MeSH
- modely neurologické * MeSH
- nervová síť fyziologie MeSH
- neurony fyziologie MeSH
- počítačová simulace * MeSH
- sluchové korové centrum cytologie fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
There is ample experimental evidence describing changes of tonotopic organisation in the auditory cortex due to environmental factors. In order to uncover the underlying mechanisms, we designed a large-scale computational model of the auditory cortex. The model has up to 100 000 Izhikevich's spiking neurons of 17 different types, almost 21 million synapses, which are evolved according to Spike-Timing-Dependent Plasticity (STDP) and have an architecture akin to existing observations. Validation of the model revealed alternating synchronised/desynchronised states and different modes of oscillatory activity. We provide insight into these phenomena via analysing the activity of neuronal subtypes and testing different causal interventions into the simulation. Our model is able to produce experimental predictions on a cell type basis. To study the influence of environmental factors on the tonotopy, different types of auditory stimulations during the evolution of the network were modelled and compared. We found that strong white noise resulted in completely disrupted tonotopy, which is consistent with in vivo experimental observations. Stimulation with pure tones or spontaneous activity led to a similar degree of tonotopy as in the initial state of the network. Interestingly, weak white noise led to a substantial increase in tonotopy. As the STDP was the only mechanism of plasticity in our model, our results suggest that STDP is a sufficient condition for the emergence and disruption of tonotopy under various types of stimuli. The presented large-scale model of the auditory cortex and the core simulator, SUSNOIMAC, have been made publicly available.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16020318
- 003
- CZ-PrNML
- 005
- 20181029085430.0
- 007
- ta
- 008
- 160722s2015 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s10827-015-0568-2 $2 doi
- 024 7_
- $a 10.1007/s10827-015-0568-2 $2 doi
- 035 __
- $a (PubMed)26344164
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Tomková, Markéta $u Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic. marketa.tomkova@stcatz.ox.ac.uk. Life Sciences Interface Doctoral Training Centre, University of Oxford, Oxford, UK. marketa.tomkova@stcatz.ox.ac.uk.
- 245 10
- $a Formation and disruption of tonotopy in a large-scale model of the auditory cortex / $c M. Tomková, J. Tomek, O. Novák, O. Zelenka, J. Syka, C. Brom,
- 520 9_
- $a There is ample experimental evidence describing changes of tonotopic organisation in the auditory cortex due to environmental factors. In order to uncover the underlying mechanisms, we designed a large-scale computational model of the auditory cortex. The model has up to 100 000 Izhikevich's spiking neurons of 17 different types, almost 21 million synapses, which are evolved according to Spike-Timing-Dependent Plasticity (STDP) and have an architecture akin to existing observations. Validation of the model revealed alternating synchronised/desynchronised states and different modes of oscillatory activity. We provide insight into these phenomena via analysing the activity of neuronal subtypes and testing different causal interventions into the simulation. Our model is able to produce experimental predictions on a cell type basis. To study the influence of environmental factors on the tonotopy, different types of auditory stimulations during the evolution of the network were modelled and compared. We found that strong white noise resulted in completely disrupted tonotopy, which is consistent with in vivo experimental observations. Stimulation with pure tones or spontaneous activity led to a similar degree of tonotopy as in the initial state of the network. Interestingly, weak white noise led to a substantial increase in tonotopy. As the STDP was the only mechanism of plasticity in our model, our results suggest that STDP is a sufficient condition for the emergence and disruption of tonotopy under various types of stimuli. The presented large-scale model of the auditory cortex and the core simulator, SUSNOIMAC, have been made publicly available.
- 650 _2
- $a akustická stimulace $7 D000161
- 650 _2
- $a akční potenciály $x fyziologie $7 D000200
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a sluchové korové centrum $x cytologie $x fyziologie $7 D001303
- 650 12
- $a počítačová simulace $7 D003198
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a modely neurologické $7 D008959
- 650 _2
- $a nervová síť $x fyziologie $7 D009415
- 650 _2
- $a neurony $x fyziologie $7 D009474
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Tomek, Jakub $u Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic. Life Sciences Interface Doctoral Training Centre, University of Oxford, Oxford, UK.
- 700 1_
- $a Novák, Ondřej $u Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic. ondrej.novak@biomed.cas.cz.
- 700 1_
- $a Zelenka, Ondřej $u Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
- 700 1_
- $a Syka, Josef $u Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
- 700 1_
- $a Brom, Cyril, $u Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic. $d 1978- $7 xx0228638
- 773 0_
- $w MED00007695 $t Journal of computational neuroscience $x 1573-6873 $g Roč. 39, č. 2 (2015), s. 131-53
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26344164 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160722 $b ABA008
- 991 __
- $a 20181029085945 $b ABA008
- 999 __
- $a ok $b bmc $g 1154988 $s 944846
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 39 $c 2 $d 131-53 $e 20150907 $i 1573-6873 $m Journal of computational neuroscience $n J Comput Neurosci $x MED00007695
- LZP __
- $a Pubmed-20160722