• Something wrong with this record ?

Sensitivity of PPI analysis to differences in noise reduction strategies

M. Barton, R. Marecek, I. Rektor, P. Filip, E. Janousova, M. Mikl,

. 2015 ; 253 (-) : 218-32. [pub] 20150708

Language English Country Netherlands

Document type Journal Article, Research Support, Non-U.S. Gov't

BACKGROUND: In some fields of fMRI data analysis, using correct methods for dealing with noise is crucial for achieving meaningful results. This paper provides a quantitative assessment of the effects of different preprocessing and noise filtering strategies on psychophysiological interactions (PPI) methods for analyzing fMRI data where noise management has not yet been established. METHODS: Both real and simulated fMRI data were used to assess these effects. Four regions of interest (ROIs) were chosen for the PPI analysis on the basis of their engagement during two tasks. PPI analysis was performed for 32 different preprocessing and analysis settings, which included data filtering with RETROICOR or no such filtering; different filtering of the ROI "seed" signal with a nuisance data-driven time series; and the involvement of these data-driven time series in the subsequent PPI GLM analysis. The extent of the statistically significant results was quantified at the group level using simple descriptive statistics. Simulated data were generated to assess statistical improvement of different filtering strategies. RESULTS: We observed that different approaches for dealing with noise in PPI analysis yield differing results in real data. In simulated data, we found RETROICOR, seed signal filtering and the addition of data-driven covariates to the PPI design matrix significantly improves results. CONCLUSIONS: We recommend the use of RETROICOR, and data-driven filtering of the whole data, or alternatively, seed signal filtering with data-driven signals and the addition of data-driven covariates to the PPI design matrix.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16020560
003      
CZ-PrNML
005      
20160727115332.0
007      
ta
008      
160722s2015 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jneumeth.2015.06.021 $2 doi
024    7_
$a 10.1016/j.jneumeth.2015.06.021 $2 doi
035    __
$a (PubMed)26162613
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Barton, M $u CEITEC MU, Multimodal and Functional Neuroimaging Research Group, Brno, Czech Republic. Electronic address: barton@ceitec.muni.cz.
245    10
$a Sensitivity of PPI analysis to differences in noise reduction strategies / $c M. Barton, R. Marecek, I. Rektor, P. Filip, E. Janousova, M. Mikl,
520    9_
$a BACKGROUND: In some fields of fMRI data analysis, using correct methods for dealing with noise is crucial for achieving meaningful results. This paper provides a quantitative assessment of the effects of different preprocessing and noise filtering strategies on psychophysiological interactions (PPI) methods for analyzing fMRI data where noise management has not yet been established. METHODS: Both real and simulated fMRI data were used to assess these effects. Four regions of interest (ROIs) were chosen for the PPI analysis on the basis of their engagement during two tasks. PPI analysis was performed for 32 different preprocessing and analysis settings, which included data filtering with RETROICOR or no such filtering; different filtering of the ROI "seed" signal with a nuisance data-driven time series; and the involvement of these data-driven time series in the subsequent PPI GLM analysis. The extent of the statistically significant results was quantified at the group level using simple descriptive statistics. Simulated data were generated to assess statistical improvement of different filtering strategies. RESULTS: We observed that different approaches for dealing with noise in PPI analysis yield differing results in real data. In simulated data, we found RETROICOR, seed signal filtering and the addition of data-driven covariates to the PPI design matrix significantly improves results. CONCLUSIONS: We recommend the use of RETROICOR, and data-driven filtering of the whole data, or alternatively, seed signal filtering with data-driven signals and the addition of data-driven covariates to the PPI design matrix.
650    _2
$a dospělí $7 D000328
650    12
$a algoritmy $7 D000465
650    _2
$a mozek $x krevní zásobení $x fyziologie $7 D001921
650    12
$a mapování mozku $7 D001931
650    _2
$a podněty $7 D003463
650    _2
$a interpretace statistických dat $7 D003627
650    _2
$a rozhodování $x fyziologie $7 D003657
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a interpretace obrazu počítačem $7 D007090
650    _2
$a magnetická rezonanční tomografie $7 D008279
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    12
$a hluk $7 D009622
650    _2
$a světelná stimulace $7 D010775
650    _2
$a sémantika $7 D012660
650    _2
$a zraková percepce $x fyziologie $7 D014796
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Marecek, R $u CEITEC MU, Multimodal and Functional Neuroimaging Research Group, Brno, Czech Republic. Electronic address: rmarec@med.muni.cz.
700    1_
$a Rektor, I $u CEITEC MU, Multimodal and Functional Neuroimaging Research Group, Brno, Czech Republic. Electronic address: ivan.rektor@fnusa.cz.
700    1_
$a Filip, P $u CEITEC MU, Behavioral and Social Neuroscience Research Group, Brno, Czech Republic. Electronic address: pvlfilip@gmail.com.
700    1_
$a Janousova, E $u Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic. Electronic address: janousova@iba.muni.cz.
700    1_
$a Mikl, M $u CEITEC MU, Multimodal and Functional Neuroimaging Research Group, Brno, Czech Republic. Electronic address: michal.mikl@ceitec.muni.cz.
773    0_
$w MED00002841 $t Journal of neuroscience methods $x 1872-678X $g Roč. 253, č. - (2015), s. 218-32
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26162613 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160722 $b ABA008
991    __
$a 20160727115553 $b ABA008
999    __
$a ok $b bmc $g 1155230 $s 945088
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 253 $c - $d 218-32 $e 20150708 $i 1872-678X $m Journal of neuroscience methods $n J Neurosci Methods $x MED00002841
LZP    __
$a Pubmed-20160722

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...