• Je něco špatně v tomto záznamu ?

Ferrates(FeVI, FeV, and FeIV) oxidation of iodide: Formation of triiodide

RP. Kralchevska, VK. Sharma, L. Machala, R. Zboril,

. 2016 ; 144 (-) : 1156-61. [pub] 20151023

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/bmc16028103

The presence of iodide (I(-)) in water during disinfection and oxidative treatment of water is a potential health concern because of the formation of iodinated disinfection by-products (DBPs), which may be more toxic than chlorinated DBPs. The kinetics of the oxidation of I(-) by a greener oxidant, ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) was determined as a function of pH. The second-order rate constants (k, M(-1) s(-1)) decreased from 3.9 × 10(4) M(-1) s(-1) at pH 5.0 to 1.2 × 10(1) M(-1) s(-1) at pH 10.3. The kinetics results could be described by the reactivity of monoprotonated species of Fe(VI) (HFe(VI)O4(-)) with I(-). In excess I(-) concentration, triiodide (I3(-)) was formed and the stoichiometry of ∼1:1 ([Fe(VI)]:[I3(-)]) was found in both acidic and basic pH. Ferrate(V) (Fe(V)O4(3-), Fe(V)) and ferrate(IV) (Fe(VI)O4(4-), Fe(IV)) also showed the formation of I3(-) in presence of excess I(-). A mechanism of the formation of I3(-) is proposed, which is consistent with the observed stoichiometry of 1:1. The oxidative treatment of I(-) in water will be rapid (t1/2 = 0.6 s at pH 7.0 using 10 mg L(-1) K2FeO4). The implications of the results and their comparison with the oxidation of I(-) by conventional disinfectants/oxidants in water treatment are briefly discussed.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16028103
003      
CZ-PrNML
005      
20161024103359.0
007      
ta
008      
161005s2016 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.chemosphere.2015.09.091 $2 doi
024    7_
$a 10.1016/j.chemosphere.2015.09.091 $2 doi
035    __
$a (PubMed)26461440
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Kralchevska, Radina P $u Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, Faculty of Science, Palacký University, Olomouc, Czech Republic.
245    10
$a Ferrates(FeVI, FeV, and FeIV) oxidation of iodide: Formation of triiodide / $c RP. Kralchevska, VK. Sharma, L. Machala, R. Zboril,
520    9_
$a The presence of iodide (I(-)) in water during disinfection and oxidative treatment of water is a potential health concern because of the formation of iodinated disinfection by-products (DBPs), which may be more toxic than chlorinated DBPs. The kinetics of the oxidation of I(-) by a greener oxidant, ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) was determined as a function of pH. The second-order rate constants (k, M(-1) s(-1)) decreased from 3.9 × 10(4) M(-1) s(-1) at pH 5.0 to 1.2 × 10(1) M(-1) s(-1) at pH 10.3. The kinetics results could be described by the reactivity of monoprotonated species of Fe(VI) (HFe(VI)O4(-)) with I(-). In excess I(-) concentration, triiodide (I3(-)) was formed and the stoichiometry of ∼1:1 ([Fe(VI)]:[I3(-)]) was found in both acidic and basic pH. Ferrate(V) (Fe(V)O4(3-), Fe(V)) and ferrate(IV) (Fe(VI)O4(4-), Fe(IV)) also showed the formation of I3(-) in presence of excess I(-). A mechanism of the formation of I3(-) is proposed, which is consistent with the observed stoichiometry of 1:1. The oxidative treatment of I(-) in water will be rapid (t1/2 = 0.6 s at pH 7.0 using 10 mg L(-1) K2FeO4). The implications of the results and their comparison with the oxidation of I(-) by conventional disinfectants/oxidants in water treatment are briefly discussed.
650    _2
$a dezinficiencia $7 D004202
650    _2
$a halogenace $7 D054879
650    _2
$a jodidy $x analýza $x chemie $7 D007454
650    _2
$a železo $x chemie $7 D007501
650    _2
$a kinetika $7 D007700
650    _2
$a oxidancia $x chemie $7 D016877
650    _2
$a oxidace-redukce $7 D010084
650    _2
$a chemické látky znečišťující vodu $x analýza $x chemie $7 D014874
650    _2
$a čištění vody $x metody $7 D018508
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Sharma, Virender K $u Department of Occupational and Environmental Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA. Electronic address: vsharma@sph.tamhsc.edu.
700    1_
$a Machala, Libor $u Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, Faculty of Science, Palacký University, Olomouc, Czech Republic.
700    1_
$a Zboril, Radek $u Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, Faculty of Science, Palacký University, Olomouc, Czech Republic.
773    0_
$w MED00002124 $t Chemosphere $x 1879-1298 $g Roč. 144, č. - (2016), s. 1156-61
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26461440 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20161005 $b ABA008
991    __
$a 20161024103812 $b ABA008
999    __
$a ok $b bmc $g 1166417 $s 952733
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 144 $c - $d 1156-61 $e 20151023 $i 1879-1298 $m Chemosphere $n Chemosphere $x MED00002124
LZP    __
$a Pubmed-20161005

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...