-
Je něco špatně v tomto záznamu ?
Ferrates(FeVI, FeV, and FeIV) oxidation of iodide: Formation of triiodide
RP. Kralchevska, VK. Sharma, L. Machala, R. Zboril,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
- MeSH
- chemické látky znečišťující vodu analýza chemie MeSH
- čištění vody metody MeSH
- dezinficiencia MeSH
- halogenace MeSH
- jodidy analýza chemie MeSH
- kinetika MeSH
- oxidace-redukce MeSH
- oxidancia chemie MeSH
- železo chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The presence of iodide (I(-)) in water during disinfection and oxidative treatment of water is a potential health concern because of the formation of iodinated disinfection by-products (DBPs), which may be more toxic than chlorinated DBPs. The kinetics of the oxidation of I(-) by a greener oxidant, ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) was determined as a function of pH. The second-order rate constants (k, M(-1) s(-1)) decreased from 3.9 × 10(4) M(-1) s(-1) at pH 5.0 to 1.2 × 10(1) M(-1) s(-1) at pH 10.3. The kinetics results could be described by the reactivity of monoprotonated species of Fe(VI) (HFe(VI)O4(-)) with I(-). In excess I(-) concentration, triiodide (I3(-)) was formed and the stoichiometry of ∼1:1 ([Fe(VI)]:[I3(-)]) was found in both acidic and basic pH. Ferrate(V) (Fe(V)O4(3-), Fe(V)) and ferrate(IV) (Fe(VI)O4(4-), Fe(IV)) also showed the formation of I3(-) in presence of excess I(-). A mechanism of the formation of I3(-) is proposed, which is consistent with the observed stoichiometry of 1:1. The oxidative treatment of I(-) in water will be rapid (t1/2 = 0.6 s at pH 7.0 using 10 mg L(-1) K2FeO4). The implications of the results and their comparison with the oxidation of I(-) by conventional disinfectants/oxidants in water treatment are briefly discussed.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16028103
- 003
- CZ-PrNML
- 005
- 20161024103359.0
- 007
- ta
- 008
- 161005s2016 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.chemosphere.2015.09.091 $2 doi
- 024 7_
- $a 10.1016/j.chemosphere.2015.09.091 $2 doi
- 035 __
- $a (PubMed)26461440
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Kralchevska, Radina P $u Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, Faculty of Science, Palacký University, Olomouc, Czech Republic.
- 245 10
- $a Ferrates(FeVI, FeV, and FeIV) oxidation of iodide: Formation of triiodide / $c RP. Kralchevska, VK. Sharma, L. Machala, R. Zboril,
- 520 9_
- $a The presence of iodide (I(-)) in water during disinfection and oxidative treatment of water is a potential health concern because of the formation of iodinated disinfection by-products (DBPs), which may be more toxic than chlorinated DBPs. The kinetics of the oxidation of I(-) by a greener oxidant, ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) was determined as a function of pH. The second-order rate constants (k, M(-1) s(-1)) decreased from 3.9 × 10(4) M(-1) s(-1) at pH 5.0 to 1.2 × 10(1) M(-1) s(-1) at pH 10.3. The kinetics results could be described by the reactivity of monoprotonated species of Fe(VI) (HFe(VI)O4(-)) with I(-). In excess I(-) concentration, triiodide (I3(-)) was formed and the stoichiometry of ∼1:1 ([Fe(VI)]:[I3(-)]) was found in both acidic and basic pH. Ferrate(V) (Fe(V)O4(3-), Fe(V)) and ferrate(IV) (Fe(VI)O4(4-), Fe(IV)) also showed the formation of I3(-) in presence of excess I(-). A mechanism of the formation of I3(-) is proposed, which is consistent with the observed stoichiometry of 1:1. The oxidative treatment of I(-) in water will be rapid (t1/2 = 0.6 s at pH 7.0 using 10 mg L(-1) K2FeO4). The implications of the results and their comparison with the oxidation of I(-) by conventional disinfectants/oxidants in water treatment are briefly discussed.
- 650 _2
- $a dezinficiencia $7 D004202
- 650 _2
- $a halogenace $7 D054879
- 650 _2
- $a jodidy $x analýza $x chemie $7 D007454
- 650 _2
- $a železo $x chemie $7 D007501
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a oxidancia $x chemie $7 D016877
- 650 _2
- $a oxidace-redukce $7 D010084
- 650 _2
- $a chemické látky znečišťující vodu $x analýza $x chemie $7 D014874
- 650 _2
- $a čištění vody $x metody $7 D018508
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Sharma, Virender K $u Department of Occupational and Environmental Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA. Electronic address: vsharma@sph.tamhsc.edu.
- 700 1_
- $a Machala, Libor $u Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, Faculty of Science, Palacký University, Olomouc, Czech Republic.
- 700 1_
- $a Zboril, Radek $u Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, Faculty of Science, Palacký University, Olomouc, Czech Republic.
- 773 0_
- $w MED00002124 $t Chemosphere $x 1879-1298 $g Roč. 144, č. - (2016), s. 1156-61
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26461440 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20161005 $b ABA008
- 991 __
- $a 20161024103812 $b ABA008
- 999 __
- $a ok $b bmc $g 1166417 $s 952733
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 144 $c - $d 1156-61 $e 20151023 $i 1879-1298 $m Chemosphere $n Chemosphere $x MED00002124
- LZP __
- $a Pubmed-20161005