• Je něco špatně v tomto záznamu ?

Cell adhesion and growth enabled by biomimetic oligopeptide modification of a polydopamine-poly(ethylene oxide) protein repulsive surface

J. Musilkova, I. Kotelnikov, K. Novotna, O. Pop-Georgievski, F. Rypacek, L. Bacakova, V. Proks,

. 2015 ; 26 (11) : 253. [pub] 20151008

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16028124

Protein-repulsive surfaces modified with ligands for cell adhesion receptors have been widely developed for controlling the cell adhesion and growth in tissue engineering. However, the question of matrix production and deposition by cells on these surfaces has rarely been addressed. In this study, protein-repulsive polydopamine-poly(ethylene oxide) (PDA-PEO) surfaces were functionalized with an RGD-containing peptide (RGD), with a collagen-derived peptide binding fibronectin (Col), or by a combination of these peptides (RGD + Col, ratio 1:1) in concentrations of 90 fmol/cm(2) and 700 fmol/cm(2) for each peptide type. When seeded with vascular endothelial CPAE cells, the PDA-PEO surfaces proved to be completely non-adhesive for cells. On surfaces with lower peptide concentrations and from days 1 to 3 after seeding, cell adhesion and growth was restored practically only on the RGD-modified surface. However, from days 3 to 7, cell adhesion and growth was improved on surfaces modified with Col and with RGD + Col. At higher peptide concentrations, the cell adhesion and growth was markedly improved on all peptide-modified surfaces in both culture intervals. However, the collagen-derived peptide did not increase the expression of fibronectin in the cells. The deposition of fibronectin on the material surface was generally very low and similar on all peptide-modified surfaces. Nevertheless, the RGD + Col surfaces exhibited the highest cell adhesion stability under a dynamic load, which correlated with the highest expression of talin and vinculin in the cells on these surfaces. A combination of RGD + Col therefore seems to be the most promising for surface modification of biomaterials, e.g. vascular prostheses.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16028124
003      
CZ-PrNML
005      
20161025104304.0
007      
ta
008      
161005s2015 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s10856-015-5583-3 $2 doi
024    7_
$a 10.1007/s10856-015-5583-3 $2 doi
035    __
$a (PubMed)26449443
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Musilkova, Jana $u Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 14220, Prague 4 - Krc, Czech Republic.
245    10
$a Cell adhesion and growth enabled by biomimetic oligopeptide modification of a polydopamine-poly(ethylene oxide) protein repulsive surface / $c J. Musilkova, I. Kotelnikov, K. Novotna, O. Pop-Georgievski, F. Rypacek, L. Bacakova, V. Proks,
520    9_
$a Protein-repulsive surfaces modified with ligands for cell adhesion receptors have been widely developed for controlling the cell adhesion and growth in tissue engineering. However, the question of matrix production and deposition by cells on these surfaces has rarely been addressed. In this study, protein-repulsive polydopamine-poly(ethylene oxide) (PDA-PEO) surfaces were functionalized with an RGD-containing peptide (RGD), with a collagen-derived peptide binding fibronectin (Col), or by a combination of these peptides (RGD + Col, ratio 1:1) in concentrations of 90 fmol/cm(2) and 700 fmol/cm(2) for each peptide type. When seeded with vascular endothelial CPAE cells, the PDA-PEO surfaces proved to be completely non-adhesive for cells. On surfaces with lower peptide concentrations and from days 1 to 3 after seeding, cell adhesion and growth was restored practically only on the RGD-modified surface. However, from days 3 to 7, cell adhesion and growth was improved on surfaces modified with Col and with RGD + Col. At higher peptide concentrations, the cell adhesion and growth was markedly improved on all peptide-modified surfaces in both culture intervals. However, the collagen-derived peptide did not increase the expression of fibronectin in the cells. The deposition of fibronectin on the material surface was generally very low and similar on all peptide-modified surfaces. Nevertheless, the RGD + Col surfaces exhibited the highest cell adhesion stability under a dynamic load, which correlated with the highest expression of talin and vinculin in the cells on these surfaces. A combination of RGD + Col therefore seems to be the most promising for surface modification of biomaterials, e.g. vascular prostheses.
650    _2
$a adsorpce $7 D000327
650    _2
$a sekvence aminokyselin $7 D000595
650    12
$a biomimetika $7 D032701
650    12
$a buněčná adheze $7 D002448
650    _2
$a kultivované buňky $7 D002478
650    _2
$a fibronektiny $x chemie $x genetika $7 D005353
650    _2
$a exprese genu $7 D015870
650    _2
$a lidé $7 D006801
650    _2
$a indoly $x chemie $7 D007211
650    _2
$a molekulární sekvence - údaje $7 D008969
650    _2
$a oligopeptidy $x chemie $7 D009842
650    _2
$a polyethylenglykoly $x chemie $7 D011092
650    _2
$a polymery $x chemie $7 D011108
650    _2
$a povrchové vlastnosti $7 D013499
650    _2
$a talin $x genetika $7 D016608
650    _2
$a vinkulin $x genetika $7 D016596
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kotelnikov, Ilya $u Department of Biomaterials and Bioanalogous Systems, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 1888/2, 16206, Prague 6, Czech Republic.
700    1_
$a Novotna, Katarina $u Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 14220, Prague 4 - Krc, Czech Republic.
700    1_
$a Pop-Georgievski, Ognen $u Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 1888/2, 16206, Prague 6, Czech Republic.
700    1_
$a Rypacek, Frantisek $u Department of Biomaterials and Bioanalogous Systems, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 1888/2, 16206, Prague 6, Czech Republic.
700    1_
$a Bacakova, Lucie $u Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 14220, Prague 4 - Krc, Czech Republic. lucy@biomed.cas.cz.
700    1_
$a Proks, Vladimir $u Department of Biomaterials and Bioanalogous Systems, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 1888/2, 16206, Prague 6, Czech Republic. proks@imc.cas.cz.
773    0_
$w MED00002780 $t Journal of materials science. Materials in medicine $x 1573-4838 $g Roč. 26, č. 11 (2015), s. 253
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26449443 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20161005 $b ABA008
991    __
$a 20161025104718 $b ABA008
999    __
$a ok $b bmc $g 1166438 $s 952754
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 26 $c 11 $d 253 $e 20151008 $i 1573-4838 $m Journal of materials science. Materials in medicine $n J Mater Sci Mater Med $x MED00002780
LZP    __
$a Pubmed-20161005

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...