Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Fully automated classification of bone marrow infiltration in low-dose CT of patients with multiple myeloma based on probabilistic density model and supervised learning

F. Martínez-Martínez, J. Kybic, L. Lambert, Z. Mecková,

. 2016 ; 71 (-) : 57-66. [pub] 20160208

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, randomizované kontrolované studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc17000438

This paper presents a fully automated method for the identification of bone marrow infiltration in femurs in low-dose CT of patients with multiple myeloma. We automatically find the femurs and the bone marrow within them. In the next step, we create a probabilistic, spatially dependent density model of normal tissue. At test time, we detect unexpectedly high density voxels which may be related to bone marrow infiltration, as outliers to this model. Based on a set of global, aggregated features representing all detections from one femur, we classify the subjects as being either healthy or not. This method was validated on a dataset of 127 subjects with ground truth created from a consensus of two expert radiologists, obtaining an AUC of 0.996 for the task of distinguishing healthy controls and patients with bone marrow infiltration. To the best of our knowledge, no other automatic image-based method for this task has been published before.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17000438
003      
CZ-PrNML
005      
20170113124840.0
007      
ta
008      
170103s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.compbiomed.2016.02.001 $2 doi
024    7_
$a 10.1016/j.compbiomed.2016.02.001 $2 doi
035    __
$a (PubMed)26894595
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Martínez-Martínez, Francisco $u Center for Machine Perception, Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic. Electronic address: martifr1@cmp.felk.cvut.cz.
245    10
$a Fully automated classification of bone marrow infiltration in low-dose CT of patients with multiple myeloma based on probabilistic density model and supervised learning / $c F. Martínez-Martínez, J. Kybic, L. Lambert, Z. Mecková,
520    9_
$a This paper presents a fully automated method for the identification of bone marrow infiltration in femurs in low-dose CT of patients with multiple myeloma. We automatically find the femurs and the bone marrow within them. In the next step, we create a probabilistic, spatially dependent density model of normal tissue. At test time, we detect unexpectedly high density voxels which may be related to bone marrow infiltration, as outliers to this model. Based on a set of global, aggregated features representing all detections from one femur, we classify the subjects as being either healthy or not. This method was validated on a dataset of 127 subjects with ground truth created from a consensus of two expert radiologists, obtaining an AUC of 0.996 for the task of distinguishing healthy controls and patients with bone marrow infiltration. To the best of our knowledge, no other automatic image-based method for this task has been published before.
650    _2
$a senioři $7 D000368
650    _2
$a nádory kostní dřeně $7 D019046
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    12
$a počítačové zpracování obrazu $7 D007091
650    12
$a strojové učení $7 D000069550
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a mnohočetný myelom $7 D009101
650    _2
$a metastázy nádorů $7 D009362
650    _2
$a počítačová rentgenová tomografie $x metody $7 D014057
655    _2
$a časopisecké články $7 D016428
655    _2
$a randomizované kontrolované studie $7 D016449
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kybic, Jan $u Center for Machine Perception, Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic. Electronic address: kybic@fel.cvut.cz.
700    1_
$a Lambert, Lukáš $u Department of Radiology, First Faculty of Medicine, Charles University in Prague, Czech Republic. Electronic address: lambert.lukas@gmail.com.
700    1_
$a Mecková, Zuzana $u Department of Radiology, First Faculty of Medicine, Charles University in Prague, Czech Republic. Electronic address: Zuzana.Meckova@vfn.cz.
773    0_
$w MED00001218 $t Computers in biology and medicine $x 1879-0534 $g Roč. 71, č. - (2016), s. 57-66
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26894595 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170103 $b ABA008
991    __
$a 20170113124941 $b ABA008
999    __
$a ok $b bmc $g 1179578 $s 961005
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 71 $c - $d 57-66 $e 20160208 $i 1879-0534 $m Computers in biology and medicine $n Comput Biol Med $x MED00001218
LZP    __
$a Pubmed-20170103

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...