• Je něco špatně v tomto záznamu ?

Applicability of linear and nonlinear retention-time models for reversed-phase liquid chromatography separations of small molecules, peptides, and intact proteins

E. Tyteca, J. De Vos, N. Vankova, P. Cesla, G. Desmet, S. Eeltink,

. 2016 ; 39 (7) : 1249-57.

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc17000547

The applicability and predictive properties of the linear solvent strength model and two nonlinear retention-time models, i.e., the quadratic model and the Neue model, were assessed for the separation of small molecules (phenol derivatives), peptides, and intact proteins. Retention-time measurements were conducted in isocratic mode and gradient mode applying different gradient times and elution-strength combinations. The quadratic model provided the most accurate retention-factor predictions for small molecules (average absolute prediction error of 1.5%) and peptides separations (with a prediction error of 2.3%). An advantage of the Neue model is that it can provide accurate predictions based on only three gradient scouting runs, making tedious isocratic retention-time measurements obsolete. For peptides, the use of gradient scouting runs in combination with the Neue model resulted in better prediction errors (<2.2%) compared to the use of isocratic runs. The applicability of the quadratic model is limited due to a complex combination of error and exponential functions. For protein separations, only a small elution window could be applied, which is due to the strong effect of the content of organic modifier on retention. Hence, the linear retention-time behavior of intact proteins is well described by the linear solvent strength model. Prediction errors using gradient scouting runs were significantly lower (2.2%) than when using isocratic scouting runs (3.2%).

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17000547
003      
CZ-PrNML
005      
20170119131046.0
007      
ta
008      
170103s2016 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1002/jssc.201501395 $2 doi
024    7_
$a 10.1002/jssc.201501395 $2 doi
035    __
$a (PubMed)26829155
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Tyteca, Eva $u Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium.
245    10
$a Applicability of linear and nonlinear retention-time models for reversed-phase liquid chromatography separations of small molecules, peptides, and intact proteins / $c E. Tyteca, J. De Vos, N. Vankova, P. Cesla, G. Desmet, S. Eeltink,
520    9_
$a The applicability and predictive properties of the linear solvent strength model and two nonlinear retention-time models, i.e., the quadratic model and the Neue model, were assessed for the separation of small molecules (phenol derivatives), peptides, and intact proteins. Retention-time measurements were conducted in isocratic mode and gradient mode applying different gradient times and elution-strength combinations. The quadratic model provided the most accurate retention-factor predictions for small molecules (average absolute prediction error of 1.5%) and peptides separations (with a prediction error of 2.3%). An advantage of the Neue model is that it can provide accurate predictions based on only three gradient scouting runs, making tedious isocratic retention-time measurements obsolete. For peptides, the use of gradient scouting runs in combination with the Neue model resulted in better prediction errors (<2.2%) compared to the use of isocratic runs. The applicability of the quadratic model is limited due to a complex combination of error and exponential functions. For protein separations, only a small elution window could be applied, which is due to the strong effect of the content of organic modifier on retention. Hence, the linear retention-time behavior of intact proteins is well described by the linear solvent strength model. Prediction errors using gradient scouting runs were significantly lower (2.2%) than when using isocratic scouting runs (3.2%).
650    _2
$a vysokoúčinná kapalinová chromatografie $7 D002851
650    12
$a chromatografie s reverzní fází $7 D056148
650    _2
$a molekulární modely $7 D008958
650    _2
$a molekulová hmotnost $7 D008970
650    _2
$a peptidy $x chemie $x izolace a purifikace $7 D010455
650    _2
$a fenoly $x chemie $x izolace a purifikace $7 D010636
650    _2
$a proteiny $x chemie $x izolace a purifikace $7 D011506
650    _2
$a časové faktory $7 D013997
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a De Vos, Jelle $u Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium.
700    1_
$a Vankova, Nikola $u Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium. Faculty of Chemical Technology, Department of Analytical Chemistry, University of Pardubice, Pardubice, Czech Republic.
700    1_
$a Cesla, Petr $u Faculty of Chemical Technology, Department of Analytical Chemistry, University of Pardubice, Pardubice, Czech Republic.
700    1_
$a Desmet, Gert $u Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium.
700    1_
$a Eeltink, Sebastiaan $u Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium.
773    0_
$w MED00006463 $t Journal of separation science $x 1615-9314 $g Roč. 39, č. 7 (2016), s. 1249-57
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26829155 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170103 $b ABA008
991    __
$a 20170119131155 $b ABA008
999    __
$a ok $b bmc $g 1179687 $s 961114
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 39 $c 7 $d 1249-57 $i 1615-9314 $m Journal of separation science $n J Sep Sci $x MED00006463
LZP    __
$a Pubmed-20170103

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...