-
Something wrong with this record ?
Bacteria as source of diglycosidase activity: Actinoplanes missouriensis produces 6-O-α-L-rhamnosyl-β-D-glucosidase active on flavonoids
BD. Neher, LS. Mazzaferro, M. Kotik, J. Oyhenart, P. Halada, V. Křen, JD. Breccia,
Language English Country Germany
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
ProQuest Central
from 2013-01-01 to 2017-12-31
Medline Complete (EBSCOhost)
from 1999-12-01
Health & Medicine (ProQuest)
from 2013-01-01 to 2017-12-31
- MeSH
- Bacterial Proteins genetics metabolism MeSH
- beta-Glucosidase genetics metabolism MeSH
- Chalcones chemistry metabolism MeSH
- Disaccharides chemistry metabolism MeSH
- Escherichia coli genetics metabolism MeSH
- Gene Expression MeSH
- Flavonoids chemistry metabolism MeSH
- Phylogeny MeSH
- Glycosides chemistry metabolism MeSH
- Hesperidin analogs & derivatives chemistry metabolism MeSH
- Hydrolysis MeSH
- Cloning, Molecular MeSH
- Micromonosporaceae classification genetics metabolism MeSH
- Recombinant Proteins genetics metabolism MeSH
- Rhamnose chemistry metabolism MeSH
- Substrate Specificity MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Bacteria represent an underexplored source of diglycosidases. Twenty-five bacterial strains from the genera Actinoplanes, Bacillus, Corynebacterium, Microbacterium, and Streptomyces were selected for their ability to grow in diglycosylated flavonoids-based media. The strains Actinoplanes missouriensis and Actinoplanes liguriae exhibited hesperidin deglycosylation activity (6-O-α-L-rhamnosyl-β-D-glucosidase activity, EC 3.2.1.168), which was 3 to 4 orders of magnitude higher than the corresponding monoglycosidase activities. The diglycosidase production was confirmed in A. missouriensis by zymographic assays and NMR analysis of the released disaccharide, rutinose. The gene encoding the 6-O-α-L-rhamnosyl-β-D-glucosidase was identified in the genome sequence of A. missouriensis 431(T) (GenBank accession number BAL86042.1) and functionally expressed in Escherichia coli. The recombinant protein hydrolyzed hesperidin and hesperidin methylchalcone, but not rutin, which indicates its specificity for 7-O-rutinosylated flavonoids. The protein was classified into the glycoside hydrolase family 55 (GH55) in contrast to the known eukaryotic diglycosidases, which belong to GH1 and GH5. These findings demonstrate that organisms other than plants and filamentous fungi can contribute to an expansion of the diglycosidase toolbox.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17000882
- 003
- CZ-PrNML
- 005
- 20170112120907.0
- 007
- ta
- 008
- 170103s2016 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s00253-015-7088-x $2 doi
- 024 7_
- $a 10.1007/s00253-015-7088-x $2 doi
- 035 __
- $a (PubMed)26549237
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Neher, Bárbara D $u INCITAP - CONICET (National Scientific and Technical Research Council. Department of Chemistry, Faculty of Natural Sciences, National University of La Pampa (UNLPam), Av. Uruguay 151, (6300), Santa Rosa, La Pampa, Argentina.
- 245 10
- $a Bacteria as source of diglycosidase activity: Actinoplanes missouriensis produces 6-O-α-L-rhamnosyl-β-D-glucosidase active on flavonoids / $c BD. Neher, LS. Mazzaferro, M. Kotik, J. Oyhenart, P. Halada, V. Křen, JD. Breccia,
- 520 9_
- $a Bacteria represent an underexplored source of diglycosidases. Twenty-five bacterial strains from the genera Actinoplanes, Bacillus, Corynebacterium, Microbacterium, and Streptomyces were selected for their ability to grow in diglycosylated flavonoids-based media. The strains Actinoplanes missouriensis and Actinoplanes liguriae exhibited hesperidin deglycosylation activity (6-O-α-L-rhamnosyl-β-D-glucosidase activity, EC 3.2.1.168), which was 3 to 4 orders of magnitude higher than the corresponding monoglycosidase activities. The diglycosidase production was confirmed in A. missouriensis by zymographic assays and NMR analysis of the released disaccharide, rutinose. The gene encoding the 6-O-α-L-rhamnosyl-β-D-glucosidase was identified in the genome sequence of A. missouriensis 431(T) (GenBank accession number BAL86042.1) and functionally expressed in Escherichia coli. The recombinant protein hydrolyzed hesperidin and hesperidin methylchalcone, but not rutin, which indicates its specificity for 7-O-rutinosylated flavonoids. The protein was classified into the glycoside hydrolase family 55 (GH55) in contrast to the known eukaryotic diglycosidases, which belong to GH1 and GH5. These findings demonstrate that organisms other than plants and filamentous fungi can contribute to an expansion of the diglycosidase toolbox.
- 650 _2
- $a bakteriální proteiny $x genetika $x metabolismus $7 D001426
- 650 _2
- $a chalkonoidy $x chemie $x metabolismus $7 D047188
- 650 _2
- $a klonování DNA $7 D003001
- 650 _2
- $a disacharidy $x chemie $x metabolismus $7 D004187
- 650 _2
- $a Escherichia coli $x genetika $x metabolismus $7 D004926
- 650 _2
- $a flavonoidy $x chemie $x metabolismus $7 D005419
- 650 _2
- $a exprese genu $7 D015870
- 650 _2
- $a glykosidy $x chemie $x metabolismus $7 D006027
- 650 _2
- $a hesperidin $x analogy a deriváty $x chemie $x metabolismus $7 D006569
- 650 _2
- $a hydrolýza $7 D006868
- 650 _2
- $a Micromonosporaceae $x klasifikace $x genetika $x metabolismus $7 D008848
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a rekombinantní proteiny $x genetika $x metabolismus $7 D011994
- 650 _2
- $a rhamnosa $x chemie $x metabolismus $7 D012210
- 650 _2
- $a substrátová specifita $7 D013379
- 650 _2
- $a beta-glukosidasa $x genetika $x metabolismus $7 D001617
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Mazzaferro, Laura S $u INCITAP - CONICET (National Scientific and Technical Research Council. Department of Chemistry, Faculty of Natural Sciences, National University of La Pampa (UNLPam), Av. Uruguay 151, (6300), Santa Rosa, La Pampa, Argentina.
- 700 1_
- $a Kotik, Michael $u Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídenská 1083, CZ-142 20, Prague, Czech Republic.
- 700 1_
- $a Oyhenart, Jorge $u INCITAP - CONICET (National Scientific and Technical Research Council. Department of Chemistry, Faculty of Natural Sciences, National University of La Pampa (UNLPam), Av. Uruguay 151, (6300), Santa Rosa, La Pampa, Argentina.
- 700 1_
- $a Halada, Petr $u Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídenská 1083, CZ-142 20, Prague, Czech Republic.
- 700 1_
- $a Křen, Vladimír $u Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídenská 1083, CZ-142 20, Prague, Czech Republic.
- 700 1_
- $a Breccia, Javier D $u INCITAP - CONICET (National Scientific and Technical Research Council. Department of Chemistry, Faculty of Natural Sciences, National University of La Pampa (UNLPam), Av. Uruguay 151, (6300), Santa Rosa, La Pampa, Argentina. javierbreccia@gmail.com.
- 773 0_
- $w MED00000493 $t Applied microbiology and biotechnology $x 1432-0614 $g Roč. 100, č. 7 (2016), s. 3061-70
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26549237 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170103 $b ABA008
- 991 __
- $a 20170112121006 $b ABA008
- 999 __
- $a ok $b bmc $g 1180022 $s 961449
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 100 $c 7 $d 3061-70 $e 20151109 $i 1432-0614 $m Applied microbiology and biotechnology $n Appl Microbiol Biotechnol $x MED00000493
- LZP __
- $a Pubmed-20170103