-
Je něco špatně v tomto záznamu ?
Influence of ligand binding on structure and thermostability of human α1-acid glycoprotein
V. Kopecký, R. Ettrich, T. Pazderka, K. Hofbauerová, D. Řeha, V. Baumruk,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
26400697
DOI
10.1002/jmr.2496
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- molekulární modely MeSH
- orosomukoid chemie metabolismus MeSH
- progesteron chemie metabolismus MeSH
- propranolol chemie metabolismus MeSH
- Ramanova spektroskopie MeSH
- sekundární struktura proteinů MeSH
- simulace molekulového dockingu MeSH
- stabilita proteinů MeSH
- termodynamika MeSH
- tryptofan metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- warfarin chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Ligand binding of neutral progesterone, basic propranolol, and acidic warfarin to human α1-acid glycoprotein (AGP) was investigated by Raman spectroscopy. The binding itself is characterized by a uniform conformational shift in which a tryptophan residue is involved. Slight differences corresponding to different contacts of the individual ligands inside the β-barrel are described. Results are compared with in silico ligand docking into the available crystal structure of deglycosylated AGP using quantum/molecular mechanics. Calculated binding energies are -18.2, -14.5, and -11.5 kcal/mol for warfarin, propranolol, and progesterone, respectively. These calculations are consistent with Raman difference spectroscopy; nevertheless, minor discrepancies in the precise positions of the ligands point to structural differences between deglycosylated and native AGP. Thermal dynamics of AGP with/without bounded warfarin was followed by Raman spectroscopy in a temperature range of 10-95 °C and analyzed by principal component analysis. With increasing temperature, a slight decrease of α-helical content is observed that coincides with an increase in β-sheet content. Above 45 °C, also β-strands tend to unfold, and the observed decrease in β-sheet coincides with an increase of β-turns accompanied by a conformational shift of the nearby disulfide bridge from high-energy trans-gauche-trans to more relaxed gauche-gauche-trans. This major rearrangement in the vicinity of the bridge is not only characterized by unfolding of the β-sheet but also by subsequent ligand release. Hereby, ligand binding alters the protein dynamics, and the more rigid protein-ligand complex shows an improved thermal stability, a finding that contributes to the reported chaperone-like function of AGP.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17000998
- 003
- CZ-PrNML
- 005
- 20170120094505.0
- 007
- ta
- 008
- 170103s2016 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/jmr.2496 $2 doi
- 024 7_
- $a 10.1002/jmr.2496 $2 doi
- 035 __
- $a (PubMed)26400697
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Kopecký, Vladimír $u Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, CZ-12116, Prague 2, Czech Republic.
- 245 10
- $a Influence of ligand binding on structure and thermostability of human α1-acid glycoprotein / $c V. Kopecký, R. Ettrich, T. Pazderka, K. Hofbauerová, D. Řeha, V. Baumruk,
- 520 9_
- $a Ligand binding of neutral progesterone, basic propranolol, and acidic warfarin to human α1-acid glycoprotein (AGP) was investigated by Raman spectroscopy. The binding itself is characterized by a uniform conformational shift in which a tryptophan residue is involved. Slight differences corresponding to different contacts of the individual ligands inside the β-barrel are described. Results are compared with in silico ligand docking into the available crystal structure of deglycosylated AGP using quantum/molecular mechanics. Calculated binding energies are -18.2, -14.5, and -11.5 kcal/mol for warfarin, propranolol, and progesterone, respectively. These calculations are consistent with Raman difference spectroscopy; nevertheless, minor discrepancies in the precise positions of the ligands point to structural differences between deglycosylated and native AGP. Thermal dynamics of AGP with/without bounded warfarin was followed by Raman spectroscopy in a temperature range of 10-95 °C and analyzed by principal component analysis. With increasing temperature, a slight decrease of α-helical content is observed that coincides with an increase in β-sheet content. Above 45 °C, also β-strands tend to unfold, and the observed decrease in β-sheet coincides with an increase of β-turns accompanied by a conformational shift of the nearby disulfide bridge from high-energy trans-gauche-trans to more relaxed gauche-gauche-trans. This major rearrangement in the vicinity of the bridge is not only characterized by unfolding of the β-sheet but also by subsequent ligand release. Hereby, ligand binding alters the protein dynamics, and the more rigid protein-ligand complex shows an improved thermal stability, a finding that contributes to the reported chaperone-like function of AGP.
- 650 _2
- $a vazebná místa $7 D001665
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a molekulární modely $7 D008958
- 650 _2
- $a simulace molekulového dockingu $7 D062105
- 650 _2
- $a orosomukoid $x chemie $x metabolismus $7 D009961
- 650 _2
- $a progesteron $x chemie $x metabolismus $7 D011374
- 650 _2
- $a propranolol $x chemie $x metabolismus $7 D011433
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a stabilita proteinů $7 D055550
- 650 _2
- $a sekundární struktura proteinů $7 D017433
- 650 _2
- $a Ramanova spektroskopie $7 D013059
- 650 _2
- $a termodynamika $7 D013816
- 650 _2
- $a tryptofan $x metabolismus $7 D014364
- 650 _2
- $a warfarin $x chemie $x metabolismus $7 D014859
- 655 _2
- $a srovnávací studie $7 D003160
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Ettrich, Rüdiger $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zámek 136, CZ-37333, Nové Hrady, Czech Republic. Faculty of Sciences, University of South Bohemia, Zámek 136, CZ-37333, Nové Hrady, Czech Republic.
- 700 1_
- $a Pazderka, Tomáš $u Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, CZ-12116, Prague 2, Czech Republic.
- 700 1_
- $a Hofbauerová, Kateřina $u Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, CZ-12116, Prague 2, Czech Republic. Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic.
- 700 1_
- $a Řeha, David $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zámek 136, CZ-37333, Nové Hrady, Czech Republic. Faculty of Sciences, University of South Bohemia, Zámek 136, CZ-37333, Nové Hrady, Czech Republic.
- 700 1_
- $a Baumruk, Vladimír $u Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, CZ-12116, Prague 2, Czech Republic.
- 773 0_
- $w MED00002813 $t Journal of molecular recognition JMR $x 1099-1352 $g Roč. 29, č. 2 (2016), s. 70-9
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26400697 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170103 $b ABA008
- 991 __
- $a 20170120094615 $b ABA008
- 999 __
- $a ok $b bmc $g 1180138 $s 961565
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 29 $c 2 $d 70-9 $e 20150924 $i 1099-1352 $m JMR. Journal of molecular recognition $n J Mol Recognit $x MED00002813
- LZP __
- $a Pubmed-20170103