Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Influence of ligand binding on structure and thermostability of human α1-acid glycoprotein

V. Kopecký, R. Ettrich, T. Pazderka, K. Hofbauerová, D. Řeha, V. Baumruk,

. 2016 ; 29 (2) : 70-9. [pub] 20150924

Language English Country England, Great Britain

Document type Comparative Study, Journal Article, Research Support, Non-U.S. Gov't

Ligand binding of neutral progesterone, basic propranolol, and acidic warfarin to human α1-acid glycoprotein (AGP) was investigated by Raman spectroscopy. The binding itself is characterized by a uniform conformational shift in which a tryptophan residue is involved. Slight differences corresponding to different contacts of the individual ligands inside the β-barrel are described. Results are compared with in silico ligand docking into the available crystal structure of deglycosylated AGP using quantum/molecular mechanics. Calculated binding energies are -18.2, -14.5, and -11.5 kcal/mol for warfarin, propranolol, and progesterone, respectively. These calculations are consistent with Raman difference spectroscopy; nevertheless, minor discrepancies in the precise positions of the ligands point to structural differences between deglycosylated and native AGP. Thermal dynamics of AGP with/without bounded warfarin was followed by Raman spectroscopy in a temperature range of 10-95 °C and analyzed by principal component analysis. With increasing temperature, a slight decrease of α-helical content is observed that coincides with an increase in β-sheet content. Above 45 °C, also β-strands tend to unfold, and the observed decrease in β-sheet coincides with an increase of β-turns accompanied by a conformational shift of the nearby disulfide bridge from high-energy trans-gauche-trans to more relaxed gauche-gauche-trans. This major rearrangement in the vicinity of the bridge is not only characterized by unfolding of the β-sheet but also by subsequent ligand release. Hereby, ligand binding alters the protein dynamics, and the more rigid protein-ligand complex shows an improved thermal stability, a finding that contributes to the reported chaperone-like function of AGP.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17000998
003      
CZ-PrNML
005      
20170120094505.0
007      
ta
008      
170103s2016 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1002/jmr.2496 $2 doi
024    7_
$a 10.1002/jmr.2496 $2 doi
035    __
$a (PubMed)26400697
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Kopecký, Vladimír $u Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, CZ-12116, Prague 2, Czech Republic.
245    10
$a Influence of ligand binding on structure and thermostability of human α1-acid glycoprotein / $c V. Kopecký, R. Ettrich, T. Pazderka, K. Hofbauerová, D. Řeha, V. Baumruk,
520    9_
$a Ligand binding of neutral progesterone, basic propranolol, and acidic warfarin to human α1-acid glycoprotein (AGP) was investigated by Raman spectroscopy. The binding itself is characterized by a uniform conformational shift in which a tryptophan residue is involved. Slight differences corresponding to different contacts of the individual ligands inside the β-barrel are described. Results are compared with in silico ligand docking into the available crystal structure of deglycosylated AGP using quantum/molecular mechanics. Calculated binding energies are -18.2, -14.5, and -11.5 kcal/mol for warfarin, propranolol, and progesterone, respectively. These calculations are consistent with Raman difference spectroscopy; nevertheless, minor discrepancies in the precise positions of the ligands point to structural differences between deglycosylated and native AGP. Thermal dynamics of AGP with/without bounded warfarin was followed by Raman spectroscopy in a temperature range of 10-95 °C and analyzed by principal component analysis. With increasing temperature, a slight decrease of α-helical content is observed that coincides with an increase in β-sheet content. Above 45 °C, also β-strands tend to unfold, and the observed decrease in β-sheet coincides with an increase of β-turns accompanied by a conformational shift of the nearby disulfide bridge from high-energy trans-gauche-trans to more relaxed gauche-gauche-trans. This major rearrangement in the vicinity of the bridge is not only characterized by unfolding of the β-sheet but also by subsequent ligand release. Hereby, ligand binding alters the protein dynamics, and the more rigid protein-ligand complex shows an improved thermal stability, a finding that contributes to the reported chaperone-like function of AGP.
650    _2
$a vazebná místa $7 D001665
650    _2
$a lidé $7 D006801
650    _2
$a molekulární modely $7 D008958
650    _2
$a simulace molekulového dockingu $7 D062105
650    _2
$a orosomukoid $x chemie $x metabolismus $7 D009961
650    _2
$a progesteron $x chemie $x metabolismus $7 D011374
650    _2
$a propranolol $x chemie $x metabolismus $7 D011433
650    _2
$a vazba proteinů $7 D011485
650    _2
$a stabilita proteinů $7 D055550
650    _2
$a sekundární struktura proteinů $7 D017433
650    _2
$a Ramanova spektroskopie $7 D013059
650    _2
$a termodynamika $7 D013816
650    _2
$a tryptofan $x metabolismus $7 D014364
650    _2
$a warfarin $x chemie $x metabolismus $7 D014859
655    _2
$a srovnávací studie $7 D003160
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Ettrich, Rüdiger $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zámek 136, CZ-37333, Nové Hrady, Czech Republic. Faculty of Sciences, University of South Bohemia, Zámek 136, CZ-37333, Nové Hrady, Czech Republic.
700    1_
$a Pazderka, Tomáš $u Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, CZ-12116, Prague 2, Czech Republic.
700    1_
$a Hofbauerová, Kateřina $u Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, CZ-12116, Prague 2, Czech Republic. Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic.
700    1_
$a Řeha, David $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zámek 136, CZ-37333, Nové Hrady, Czech Republic. Faculty of Sciences, University of South Bohemia, Zámek 136, CZ-37333, Nové Hrady, Czech Republic.
700    1_
$a Baumruk, Vladimír $u Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, CZ-12116, Prague 2, Czech Republic.
773    0_
$w MED00002813 $t Journal of molecular recognition JMR $x 1099-1352 $g Roč. 29, č. 2 (2016), s. 70-9
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26400697 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170103 $b ABA008
991    __
$a 20170120094615 $b ABA008
999    __
$a ok $b bmc $g 1180138 $s 961565
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 29 $c 2 $d 70-9 $e 20150924 $i 1099-1352 $m JMR. Journal of molecular recognition $n J Mol Recognit $x MED00002813
LZP    __
$a Pubmed-20170103

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...