-
Je něco špatně v tomto záznamu ?
Influence of core and maltose surface modification of PEIs on their interaction with plasma proteins-Human serum albumin and lysozyme
D. Wrobel, M. Marcinkowska, A. Janaszewska, D. Appelhans, B. Voit, B. Klajnert-Maculewicz, M. Bryszewska, M. Štofik, R. Herma, P. Duchnowicz, J. Maly,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články
- MeSH
- dendrimery chemie MeSH
- fluorescence MeSH
- iminy chemie MeSH
- krevní proteiny chemie MeSH
- lidé MeSH
- maltosa chemie MeSH
- muramidasa chemie MeSH
- polyethyleny chemie MeSH
- polymery chemie MeSH
- sérový albumin chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Regardless of the route of administration, some or all of a therapeutic agent will appear in the blood stream, where it can act on blood cells and other components of the plasma. Recently we have shown that poly(ethylene imines) (PEIs) which interact with plasma proteins are taken up into erythrocyte membranes. These observations led us to investigate the interactions between maltose functionalized hyperbranched PEIs (PEI-Mal) and plasma proteins. Two model proteins were chosen - human serum albumin (HSA) (albumins constitute ∼60% of all plasma proteins), and lysozyme. HSA is a negatively charged 66kDa protein at neutral pH, whereas lysozyme is a positively charged 14kDa protein. Fluorescence quenching and changes in the conformation of the amino acid tryptophan, diameter and zeta potential of proteins were investigated to evaluate the interaction of PEI-Mal with proteins. PEI-Mal interacts with both types of proteins. The strength of dendritic glycopolymer interactions was generally weak, especially with lysozyme. Greater changes were found with HSA, mainly triggered by hydrogen bonds and the electrostatic interaction properties of dendritic glycopolymers. Moreover, the structure and the size of PEI-Mal macromolecules affected these interactions; larger macromolecules with more sugar groups (95% maltose units) interacted more strongly with proteins than smaller ones with lower sugar modification (33% maltose units). Due to (i) the proven overall low toxicity of sugar-modified PEIs and, (ii) their ability to interact preferentially through hydrogen bonds with proteins of human plasma or possibly with other interesting protein targets, PEI-Mal is a good candidate for creating therapeutic nanoparticles in the fast developing field of nanomedicine.
Department of Biology Jan Evangelista Purkinje University Usti nad Labem Czechia
Leibniz Institut für Polymerforschung Dresden e 5 Hohe Straße 6 01069 Dresden Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17013311
- 003
- CZ-PrNML
- 005
- 20170502100105.0
- 007
- ta
- 008
- 170413s2017 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.colsurfb.2016.12.042 $2 doi
- 035 __
- $a (PubMed)28064094
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Wrobel, Dominika $u Department of Biology, Jan Evangelista Purkinje University, Usti nad Labem, Czechia. Electronic address: dominika.wrobel@ujep.cz.
- 245 10
- $a Influence of core and maltose surface modification of PEIs on their interaction with plasma proteins-Human serum albumin and lysozyme / $c D. Wrobel, M. Marcinkowska, A. Janaszewska, D. Appelhans, B. Voit, B. Klajnert-Maculewicz, M. Bryszewska, M. Štofik, R. Herma, P. Duchnowicz, J. Maly,
- 520 9_
- $a Regardless of the route of administration, some or all of a therapeutic agent will appear in the blood stream, where it can act on blood cells and other components of the plasma. Recently we have shown that poly(ethylene imines) (PEIs) which interact with plasma proteins are taken up into erythrocyte membranes. These observations led us to investigate the interactions between maltose functionalized hyperbranched PEIs (PEI-Mal) and plasma proteins. Two model proteins were chosen - human serum albumin (HSA) (albumins constitute ∼60% of all plasma proteins), and lysozyme. HSA is a negatively charged 66kDa protein at neutral pH, whereas lysozyme is a positively charged 14kDa protein. Fluorescence quenching and changes in the conformation of the amino acid tryptophan, diameter and zeta potential of proteins were investigated to evaluate the interaction of PEI-Mal with proteins. PEI-Mal interacts with both types of proteins. The strength of dendritic glycopolymer interactions was generally weak, especially with lysozyme. Greater changes were found with HSA, mainly triggered by hydrogen bonds and the electrostatic interaction properties of dendritic glycopolymers. Moreover, the structure and the size of PEI-Mal macromolecules affected these interactions; larger macromolecules with more sugar groups (95% maltose units) interacted more strongly with proteins than smaller ones with lower sugar modification (33% maltose units). Due to (i) the proven overall low toxicity of sugar-modified PEIs and, (ii) their ability to interact preferentially through hydrogen bonds with proteins of human plasma or possibly with other interesting protein targets, PEI-Mal is a good candidate for creating therapeutic nanoparticles in the fast developing field of nanomedicine.
- 650 _2
- $a krevní proteiny $x chemie $7 D001798
- 650 _2
- $a dendrimery $x chemie $7 D050091
- 650 _2
- $a fluorescence $7 D005453
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a iminy $x chemie $7 D007097
- 650 _2
- $a maltosa $x chemie $7 D008320
- 650 _2
- $a muramidasa $x chemie $7 D009113
- 650 _2
- $a polyethyleny $x chemie $7 D011095
- 650 _2
- $a polymery $x chemie $7 D011108
- 650 _2
- $a sérový albumin $x chemie $7 D012709
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Marcinkowska, Monika $u Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
- 700 1_
- $a Janaszewska, Anna $u Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
- 700 1_
- $a Appelhans, Dietmar $u Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany. $7 gn_A_00007820
- 700 1_
- $a Voit, Brigitte $u Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany.
- 700 1_
- $a Klajnert-Maculewicz, Barbara $u Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany.
- 700 1_
- $a Bryszewska, Maria $u Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
- 700 1_
- $a Štofik, Marcel $u Department of Biology, Jan Evangelista Purkinje University, Usti nad Labem, Czechia.
- 700 1_
- $a Herma, Regina $u Department of Biology, Jan Evangelista Purkinje University, Usti nad Labem, Czechia.
- 700 1_
- $a Duchnowicz, Piotr $u Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
- 700 1_
- $a Maly, Jan $u Department of Biology, Jan Evangelista Purkinje University, Usti nad Labem, Czechia.
- 773 0_
- $w MED00180202 $t Colloids and surfaces. B, Biointerfaces $x 1873-4367 $g Roč. 152, č. - (2017), s. 18-28
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28064094 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170413 $b ABA008
- 991 __
- $a 20170502100431 $b ABA008
- 999 __
- $a ok $b bmc $g 1199776 $s 974089
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 152 $c - $d 18-28 $e 20170102 $i 1873-4367 $m Colloids and surfaces. B, Biointerfaces $n Colloids surf., B Biointerfaces $x MED00180202
- LZP __
- $a Pubmed-20170413