Detail
Článek
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Testing for ROS1 in non-small cell lung cancer: a review with recommendations

L. Bubendorf, R. Büttner, F. Al-Dayel, M. Dietel, G. Elmberger, K. Kerr, F. López-Ríos, A. Marchetti, B. Öz, P. Pauwels, F. Penault-Llorca, G. Rossi, A. Ryška, E. Thunnissen,

. 2016 ; 469 (5) : 489-503. [pub] 20160817

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc17013445
E-zdroje Online Plný text

NLK ProQuest Central od 2003-01-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 2011-01-01 do Před 1 rokem
Nursing & Allied Health Database (ProQuest) od 2003-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 2003-01-01 do Před 1 rokem

Rearrangements of the ROS1 gene occur in 1-2 % of non-small cell lung cancers (NSCLCs). Crizotinib, a highly effective inhibitor of ROS1 kinase activity, is now FDA-approved for the treatment of patients with advanced ROS1-positive NSCLC. Consequently, focus on ROS1 testing is growing. Most laboratories currently rely on fluorescence in situ hybridisation (FISH) assays using a dual-colour break-apart probe to detect ROS1 rearrangements. Given the rarity of these rearrangements in NSCLC, detection of elevated ROS1 protein levels by immunohistochemistry may provide cost-effective screening prior to confirmatory FISH testing. Non-in situ testing approaches also hold potential as stand-alone methods or complementary tests, including multiplex real-time PCR assays and next-generation sequencing (NGS) platforms which include commercial test kits covering a range of fusion genes. In order to ensure high-quality biomarker testing, appropriate tissue handling, adequate control materials and participation in external quality assessment programmes are essential, irrespective of the testing technique employed. ROS1 testing is often only considered after negative tests for EGFR mutation and ALK gene rearrangement, based on the assumption that these oncogenic driver events tend to be exclusive. However, as the use of ROS1 inhibitors becomes routine, accurate and timely detection of ROS1 gene rearrangements will be critical for the optimal treatment of patients with NSCLC. As NGS techniques are introduced into routine diagnostic practice, ROS1 fusion gene testing will be provided as part of the initial testing package.

000      
00000naa a2200000 a 4500
001      
bmc17013445
003      
CZ-PrNML
005      
20180807105621.0
007      
ta
008      
170413s2016 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00428-016-2000-3 $2 doi
035    __
$a (PubMed)27535289
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Bubendorf, Lukas $u Institute of Pathology, University Hospital Basel, Basel, Switzerland.
245    10
$a Testing for ROS1 in non-small cell lung cancer: a review with recommendations / $c L. Bubendorf, R. Büttner, F. Al-Dayel, M. Dietel, G. Elmberger, K. Kerr, F. López-Ríos, A. Marchetti, B. Öz, P. Pauwels, F. Penault-Llorca, G. Rossi, A. Ryška, E. Thunnissen,
520    9_
$a Rearrangements of the ROS1 gene occur in 1-2 % of non-small cell lung cancers (NSCLCs). Crizotinib, a highly effective inhibitor of ROS1 kinase activity, is now FDA-approved for the treatment of patients with advanced ROS1-positive NSCLC. Consequently, focus on ROS1 testing is growing. Most laboratories currently rely on fluorescence in situ hybridisation (FISH) assays using a dual-colour break-apart probe to detect ROS1 rearrangements. Given the rarity of these rearrangements in NSCLC, detection of elevated ROS1 protein levels by immunohistochemistry may provide cost-effective screening prior to confirmatory FISH testing. Non-in situ testing approaches also hold potential as stand-alone methods or complementary tests, including multiplex real-time PCR assays and next-generation sequencing (NGS) platforms which include commercial test kits covering a range of fusion genes. In order to ensure high-quality biomarker testing, appropriate tissue handling, adequate control materials and participation in external quality assessment programmes are essential, irrespective of the testing technique employed. ROS1 testing is often only considered after negative tests for EGFR mutation and ALK gene rearrangement, based on the assumption that these oncogenic driver events tend to be exclusive. However, as the use of ROS1 inhibitors becomes routine, accurate and timely detection of ROS1 gene rearrangements will be critical for the optimal treatment of patients with NSCLC. As NGS techniques are introduced into routine diagnostic practice, ROS1 fusion gene testing will be provided as part of the initial testing package.
650    _2
$a nemalobuněčný karcinom plic $x diagnóza $x genetika $7 D002289
650    _2
$a genová přestavba $x genetika $7 D015321
650    _2
$a lidé $7 D006801
650    _2
$a nádory plic $x diagnóza $x genetika $x metabolismus $7 D008175
650    _2
$a onkogeny $x genetika $7 D009857
650    _2
$a tyrosinkinasy $x genetika $7 D011505
650    _2
$a protoonkogenní proteiny $x genetika $7 D011518
650    _2
$a tyrosinkinasové receptory $x genetika $7 D020794
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a Büttner, Reinhard $u Institute of Pathology, University Hospital Cologne and Network Genomic Medicine, Cologne, Germany.
700    1_
$a Al-Dayel, Fouad $u Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia. $7 gn_A_00003638
700    1_
$a Dietel, Manfred, $d 1948- $7 xx0226417 $u Institute of Pathology, Charité Campus Mitte, Berlin, Germany.
700    1_
$a Elmberger, Göran $u Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden.
700    1_
$a Kerr, Keith $u Department of Pathology, Aberdeen University Medical School, Aberdeen, UK.
700    1_
$a López-Ríos, Fernando $u Laboratorio de Dianas Terapéuticas, Hospital Universitario HM Sanchinarro, C/Oña, 10, 28050, Madrid, Spain. flopezrios@hmhospitales.com.
700    1_
$a Marchetti, Antonio $u Center of Predictive Molecular Medicine, University-Foundation, Chieti, Italy.
700    1_
$a Öz, Büge $u Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey.
700    1_
$a Pauwels, Patrick $u Institute of Pathology, University Hospital Antwerp, Edegem, Belgium.
700    1_
$a Penault-Llorca, Frédérique $u Department of Pathology, Centre Jean Perrin, Clermont-Ferrand, France.
700    1_
$a Rossi, Giulio $u Unit of Pathologic Anatomy, Azienda USL Valle d'Aosta, Aosta, Italy.
700    1_
$a Ryška, Aleš $u The Fingerland Department of Pathology, Charles University Faculty of Medicine and Faculty Hospital in Hradec Kralove, Hradec Kralove, Czech Republic.
700    1_
$a Thunnissen, Erik $u Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands.
773    0_
$w MED00004660 $t Virchows Archiv an international journal of pathology $x 1432-2307 $g Roč. 469, č. 5 (2016), s. 489-503
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27535289 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170413 $b ABA008
991    __
$a 20180807105942 $b ABA008
999    __
$a ok $b bmc $g 1199910 $s 974223
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 469 $c 5 $d 489-503 $e 20160817 $i 1432-2307 $m Virchows Archiv $n Virchows Arch $x MED00004660
LZP    __
$a Pubmed-20170413

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...