• Je něco špatně v tomto záznamu ?

SignalPlant: an open signal processing software platform

F. Plesinger, J. Jurco, J. Halamek, P. Jurak,

. 2016 ; 37 (7) : N38-48. [pub] 20160531

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc17013817

The growing technical standard of acquisition systems allows the acquisition of large records, often reaching gigabytes or more in size as is the case with whole-day electroencephalograph (EEG) recordings, for example. Although current 64-bit software for signal processing is able to process (e.g. filter, analyze, etc) such data, visual inspection and labeling will probably suffer from rather long latency during the rendering of large portions of recorded signals. For this reason, we have developed SignalPlant-a stand-alone application for signal inspection, labeling and processing. The main motivation was to supply investigators with a tool allowing fast and interactive work with large multichannel records produced by EEG, electrocardiograph and similar devices. The rendering latency was compared with EEGLAB and proves significantly faster when displaying an image from a large number of samples (e.g. 163-times faster for 75  ×  10(6) samples). The presented SignalPlant software is available free and does not depend on any other computation software. Furthermore, it can be extended with plugins by third parties ensuring its adaptability to future research tasks and new data formats.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17013817
003      
CZ-PrNML
005      
20170426094046.0
007      
ta
008      
170413s2016 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1088/0967-3334/37/7/N38 $2 doi
035    __
$a (PubMed)27243208
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Plesinger, F $u Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic.
245    10
$a SignalPlant: an open signal processing software platform / $c F. Plesinger, J. Jurco, J. Halamek, P. Jurak,
520    9_
$a The growing technical standard of acquisition systems allows the acquisition of large records, often reaching gigabytes or more in size as is the case with whole-day electroencephalograph (EEG) recordings, for example. Although current 64-bit software for signal processing is able to process (e.g. filter, analyze, etc) such data, visual inspection and labeling will probably suffer from rather long latency during the rendering of large portions of recorded signals. For this reason, we have developed SignalPlant-a stand-alone application for signal inspection, labeling and processing. The main motivation was to supply investigators with a tool allowing fast and interactive work with large multichannel records produced by EEG, electrocardiograph and similar devices. The rendering latency was compared with EEGLAB and proves significantly faster when displaying an image from a large number of samples (e.g. 163-times faster for 75  ×  10(6) samples). The presented SignalPlant software is available free and does not depend on any other computation software. Furthermore, it can be extended with plugins by third parties ensuring its adaptability to future research tasks and new data formats.
650    _2
$a přístup k informacím $7 D022126
650    _2
$a elektrokardiografie $x metody $7 D004562
650    _2
$a elektroencefalografie $x metody $7 D004569
650    _2
$a internet $7 D020407
650    12
$a počítačové zpracování signálu $7 D012815
650    12
$a software $7 D012984
650    _2
$a časové faktory $7 D013997
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Jurco, J
700    1_
$a Halamek, J
700    1_
$a Jurak, P
773    0_
$w MED00181057 $t Physiological measurement $x 1361-6579 $g Roč. 37, č. 7 (2016), s. N38-48
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27243208 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170413 $b ABA008
991    __
$a 20170426094404 $b ABA008
999    __
$a ok $b bmc $g 1200282 $s 974595
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 37 $c 7 $d N38-48 $e 20160531 $i 1361-6579 $m Physiological measurement $n Physiol Meas $x MED00181057
LZP    __
$a Pubmed-20170413

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace