-
Something wrong with this record ?
Reduction of Folate by Dihydrofolate Reductase from Thermotoga maritima
EJ. Loveridge, L. Hroch, RL. Hughes, T. Williams, RL. Davies, A. Angelastro, LY. Luk, G. Maglia, RK. Allemann,
Language English Country United States
Document type Journal Article
- MeSH
- Bacterial Proteins chemistry genetics metabolism MeSH
- Tetrahydrofolate Dehydrogenase chemistry genetics metabolism MeSH
- Species Specificity MeSH
- Escherichia coli chemistry enzymology genetics MeSH
- Gene Expression MeSH
- Catalytic Domain MeSH
- Kinetics MeSH
- Hydrogen-Ion Concentration MeSH
- Folic Acid chemistry metabolism MeSH
- NADP chemistry metabolism MeSH
- Oxidation-Reduction MeSH
- Protons * MeSH
- Protein Folding MeSH
- Protein Structure, Secondary MeSH
- Temperature MeSH
- Thermodynamics MeSH
- Tetrahydrofolates chemistry metabolism MeSH
- Thermotoga maritima chemistry enzymology genetics MeSH
- Publication type
- Journal Article MeSH
Mammalian dihydrofolate reductases (DHFRs) catalyze the reduction of folate more efficiently than the equivalent bacterial enzymes do, despite typically having similar efficiencies for the reduction of their natural substrate, dihydrofolate. In contrast, we show here that DHFR from the hyperthermophilic bacterium Thermotoga maritima can catalyze reduction of folate to tetrahydrofolate with an efficiency similar to that of reduction of dihydrofolate under saturating conditions. Nuclear magnetic resonance and mass spectrometry experiments showed no evidence of the production of free dihydrofolate during either the EcDHFR- or TmDHFR-catalyzed reductions of folate, suggesting that both enzymes perform the two reduction steps without release of the partially reduced substrate. Our results imply that the reaction proceeds more efficiently in TmDHFR than in EcDHFR because the more open active site of TmDHFR facilitates protonation of folate. Because T. maritima lives under extreme conditions where tetrahydrofolate is particularly prone to oxidation, this ability to salvage folate may impart an advantage to the bacterium by minimizing the squandering of a valuable cofactor.
School of Chemical Sciences University of Birmingham Edgbaston Birmingham B15 2TT U K
School of Chemistry Cardiff University Main Building Park Place Cardiff CF10 3AT U K
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17023198
- 003
- CZ-PrNML
- 005
- 20170828121919.0
- 007
- ta
- 008
- 170720s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1021/acs.biochem.6b01268 $2 doi
- 035 __
- $a (PubMed)28319664
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Loveridge, E Joel $u School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, U.K. Department of Chemistry, Swansea University , Singleton Park, Swansea SA2 8PP, U.K.
- 245 10
- $a Reduction of Folate by Dihydrofolate Reductase from Thermotoga maritima / $c EJ. Loveridge, L. Hroch, RL. Hughes, T. Williams, RL. Davies, A. Angelastro, LY. Luk, G. Maglia, RK. Allemann,
- 520 9_
- $a Mammalian dihydrofolate reductases (DHFRs) catalyze the reduction of folate more efficiently than the equivalent bacterial enzymes do, despite typically having similar efficiencies for the reduction of their natural substrate, dihydrofolate. In contrast, we show here that DHFR from the hyperthermophilic bacterium Thermotoga maritima can catalyze reduction of folate to tetrahydrofolate with an efficiency similar to that of reduction of dihydrofolate under saturating conditions. Nuclear magnetic resonance and mass spectrometry experiments showed no evidence of the production of free dihydrofolate during either the EcDHFR- or TmDHFR-catalyzed reductions of folate, suggesting that both enzymes perform the two reduction steps without release of the partially reduced substrate. Our results imply that the reaction proceeds more efficiently in TmDHFR than in EcDHFR because the more open active site of TmDHFR facilitates protonation of folate. Because T. maritima lives under extreme conditions where tetrahydrofolate is particularly prone to oxidation, this ability to salvage folate may impart an advantage to the bacterium by minimizing the squandering of a valuable cofactor.
- 650 _2
- $a bakteriální proteiny $x chemie $x genetika $x metabolismus $7 D001426
- 650 _2
- $a katalytická doména $7 D020134
- 650 _2
- $a Escherichia coli $x chemie $x enzymologie $x genetika $7 D004926
- 650 _2
- $a kyselina listová $x chemie $x metabolismus $7 D005492
- 650 _2
- $a exprese genu $7 D015870
- 650 _2
- $a koncentrace vodíkových iontů $7 D006863
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a NADP $x chemie $x metabolismus $7 D009249
- 650 _2
- $a oxidace-redukce $7 D010084
- 650 _2
- $a sbalování proteinů $7 D017510
- 650 _2
- $a sekundární struktura proteinů $7 D017433
- 650 12
- $a protony $7 D011522
- 650 _2
- $a druhová specificita $7 D013045
- 650 _2
- $a teplota $7 D013696
- 650 _2
- $a dihydrofolátreduktasa $x chemie $x genetika $x metabolismus $7 D013762
- 650 _2
- $a tetrahydrofoláty $x chemie $x metabolismus $7 D013763
- 650 _2
- $a termodynamika $7 D013816
- 650 _2
- $a Thermotoga maritima $x chemie $x enzymologie $x genetika $7 D020124
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Hroch, Lukas $u School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, U.K. Department of Pharmaceutical Chemistry and Drug Control, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague , Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
- 700 1_
- $a Hughes, Robert L $u School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, U.K.
- 700 1_
- $a Williams, Thomas $u School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, U.K.
- 700 1_
- $a Davies, Rhidian L $u School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, U.K.
- 700 1_
- $a Angelastro, Antonio $u School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, U.K. $7 gn_A_00006868
- 700 1_
- $a Luk, Louis Y P $u School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, U.K.
- 700 1_
- $a Maglia, Giovanni $u School of Chemical Sciences, University of Birmingham , Edgbaston, Birmingham B15 2TT, U.K.
- 700 1_
- $a Allemann, Rudolf K $u School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, U.K. School of Chemical Sciences, University of Birmingham , Edgbaston, Birmingham B15 2TT, U.K. $7 gn_A_00004437
- 773 0_
- $w MED00009310 $t Biochemistry $x 1520-4995 $g Roč. 56, č. 13 (2017), s. 1879-1886
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28319664 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170720 $b ABA008
- 991 __
- $a 20170828122505 $b ABA008
- 999 __
- $a ok $b bmc $g 1238879 $s 984111
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 56 $c 13 $d 1879-1886 $e 20170324 $i 1520-4995 $m Biochemistry (Easton) $n Biochemistry $x MED00009310
- LZP __
- $a Pubmed-20170720