• Je něco špatně v tomto záznamu ?

Bagged neural network model for prediction of the mean indoor radon concentration in the municipalities in Czech Republic

J. Timkova, I. Fojtikova, P. Pacherova,

. 2017 ; 166 (Pt 2) : 398-402. [pub] 20160718

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc17023842

The purpose of the study is to determine radon-prone areas in the Czech Republic based on the measurements of indoor radon concentration and independent predictors (rock type and permeability of the bedrock, gamma dose rate, GPS coordinates and the average age of family houses). The relationship between the mean observed indoor radon concentrations in monitored areas (∼22% municipalities) and the independent predictors was modelled using a bagged neural network. Levels of mean indoor radon concentration in the unmonitored areas were predicted using the bagged neural network model fitted for the monitored areas. The propensity to increased indoor radon was determined by estimated probability of exceeding the action level of 300Bq/m(3).

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17023842
003      
CZ-PrNML
005      
20170720123559.0
007      
ta
008      
170720s2017 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jenvrad.2016.07.008 $2 doi
035    __
$a (PubMed)27440462
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Timkova, Jana $u National Radiation Protection Institute, Bartoskova 28, 140 00, Praha 4, Czech Republic. Electronic address: jana.timkova@suro.cz.
245    10
$a Bagged neural network model for prediction of the mean indoor radon concentration in the municipalities in Czech Republic / $c J. Timkova, I. Fojtikova, P. Pacherova,
520    9_
$a The purpose of the study is to determine radon-prone areas in the Czech Republic based on the measurements of indoor radon concentration and independent predictors (rock type and permeability of the bedrock, gamma dose rate, GPS coordinates and the average age of family houses). The relationship between the mean observed indoor radon concentrations in monitored areas (∼22% municipalities) and the independent predictors was modelled using a bagged neural network. Levels of mean indoor radon concentration in the unmonitored areas were predicted using the bagged neural network model fitted for the monitored areas. The propensity to increased indoor radon was determined by estimated probability of exceeding the action level of 300Bq/m(3).
650    _2
$a radioaktivní látky znečišťující vzduch $x analýza $7 D000396
650    _2
$a znečištění vzduchu ve vnitřním prostředí $x statistika a číselné údaje $7 D016902
650    _2
$a radioaktivní znečištění ovzduší $x statistika a číselné údaje $7 D000398
650    _2
$a Česká republika $7 D018153
650    _2
$a teoretické modely $7 D008962
650    12
$a neuronové sítě (počítačové) $7 D016571
650    12
$a monitorování radiace $7 D011834
650    _2
$a radon $x analýza $7 D011886
655    _2
$a časopisecké články $7 D016428
700    1_
$a Fojtikova, Ivana $u National Radiation Protection Institute, Bartoskova 28, 140 00, Praha 4, Czech Republic. Electronic address: ivana.fojtikova@suro.cz.
700    1_
$a Pacherova, Petra $u Czech Geological Survey, Geologicka 6, 152 00, Praha 5, Czech Republic. Electronic address: petra.pacherova@geology.cz.
773    0_
$w MED00002660 $t Journal of environmental radioactivity $x 1879-1700 $g Roč. 166, č. Pt 2 (2017), s. 398-402
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27440462 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170720 $b ABA008
991    __
$a 20170720124052 $b ABA008
999    __
$a ok $b bmc $g 1239523 $s 984755
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 166 $c Pt 2 $d 398-402 $e 20160718 $i 1879-1700 $m Journal of environmental radioactivity $n J Environ Radioact $x MED00002660
LZP    __
$a Pubmed-20170720

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...