-
Je něco špatně v tomto záznamu ?
Bagged neural network model for prediction of the mean indoor radon concentration in the municipalities in Czech Republic
J. Timkova, I. Fojtikova, P. Pacherova,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
- MeSH
- monitorování radiace * MeSH
- neuronové sítě (počítačové) * MeSH
- radioaktivní látky znečišťující vzduch analýza MeSH
- radioaktivní znečištění ovzduší statistika a číselné údaje MeSH
- radon analýza MeSH
- teoretické modely MeSH
- znečištění vzduchu ve vnitřním prostředí statistika a číselné údaje MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
The purpose of the study is to determine radon-prone areas in the Czech Republic based on the measurements of indoor radon concentration and independent predictors (rock type and permeability of the bedrock, gamma dose rate, GPS coordinates and the average age of family houses). The relationship between the mean observed indoor radon concentrations in monitored areas (∼22% municipalities) and the independent predictors was modelled using a bagged neural network. Levels of mean indoor radon concentration in the unmonitored areas were predicted using the bagged neural network model fitted for the monitored areas. The propensity to increased indoor radon was determined by estimated probability of exceeding the action level of 300Bq/m(3).
Czech Geological Survey Geologicka 6 152 00 Praha 5 Czech Republic
National Radiation Protection Institute Bartoskova 28 140 00 Praha 4 Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17023842
- 003
- CZ-PrNML
- 005
- 20170720123559.0
- 007
- ta
- 008
- 170720s2017 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jenvrad.2016.07.008 $2 doi
- 035 __
- $a (PubMed)27440462
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Timkova, Jana $u National Radiation Protection Institute, Bartoskova 28, 140 00, Praha 4, Czech Republic. Electronic address: jana.timkova@suro.cz.
- 245 10
- $a Bagged neural network model for prediction of the mean indoor radon concentration in the municipalities in Czech Republic / $c J. Timkova, I. Fojtikova, P. Pacherova,
- 520 9_
- $a The purpose of the study is to determine radon-prone areas in the Czech Republic based on the measurements of indoor radon concentration and independent predictors (rock type and permeability of the bedrock, gamma dose rate, GPS coordinates and the average age of family houses). The relationship between the mean observed indoor radon concentrations in monitored areas (∼22% municipalities) and the independent predictors was modelled using a bagged neural network. Levels of mean indoor radon concentration in the unmonitored areas were predicted using the bagged neural network model fitted for the monitored areas. The propensity to increased indoor radon was determined by estimated probability of exceeding the action level of 300Bq/m(3).
- 650 _2
- $a radioaktivní látky znečišťující vzduch $x analýza $7 D000396
- 650 _2
- $a znečištění vzduchu ve vnitřním prostředí $x statistika a číselné údaje $7 D016902
- 650 _2
- $a radioaktivní znečištění ovzduší $x statistika a číselné údaje $7 D000398
- 650 _2
- $a Česká republika $7 D018153
- 650 _2
- $a teoretické modely $7 D008962
- 650 12
- $a neuronové sítě (počítačové) $7 D016571
- 650 12
- $a monitorování radiace $7 D011834
- 650 _2
- $a radon $x analýza $7 D011886
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Fojtikova, Ivana $u National Radiation Protection Institute, Bartoskova 28, 140 00, Praha 4, Czech Republic. Electronic address: ivana.fojtikova@suro.cz.
- 700 1_
- $a Pacherova, Petra $u Czech Geological Survey, Geologicka 6, 152 00, Praha 5, Czech Republic. Electronic address: petra.pacherova@geology.cz.
- 773 0_
- $w MED00002660 $t Journal of environmental radioactivity $x 1879-1700 $g Roč. 166, č. Pt 2 (2017), s. 398-402
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27440462 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170720 $b ABA008
- 991 __
- $a 20170720124052 $b ABA008
- 999 __
- $a ok $b bmc $g 1239523 $s 984755
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 166 $c Pt 2 $d 398-402 $e 20160718 $i 1879-1700 $m Journal of environmental radioactivity $n J Environ Radioact $x MED00002660
- LZP __
- $a Pubmed-20170720