-
Something wrong with this record ?
ATM/Wip1 activities at chromatin control Plk1 re-activation to determine G2 checkpoint duration
H. Jaiswal, J. Benada, E. Müllers, K. Akopyan, K. Burdova, T. Koolmeister, T. Helleday, RH. Medema, L. Macurek, A. Lindqvist,
Language English Country England, Great Britain
Document type Journal Article
NLK
BioMedCentral Open Access
from 2012
PubMed Central
from 2010 to 1 year ago
ProQuest Central
from 2010-03-01 to 2018-12-31
Open Access Digital Library
from 2010-01-01
Open Access Digital Library
from 2011-01-01
Health & Medicine (ProQuest)
from 2010-03-01 to 2018-12-31
- MeSH
- Ataxia Telangiectasia Mutated Proteins metabolism MeSH
- Models, Biological MeSH
- Cell Line MeSH
- Chromatin metabolism MeSH
- Phosphorylation MeSH
- G2 Phase Cell Cycle Checkpoints * MeSH
- Humans MeSH
- Protein Interaction Mapping MeSH
- Protein Processing, Post-Translational MeSH
- Protein Serine-Threonine Kinases metabolism MeSH
- Protein Phosphatase 2C metabolism MeSH
- Cell Cycle Proteins metabolism MeSH
- Proto-Oncogene Proteins metabolism MeSH
- Repressor Proteins metabolism MeSH
- Fluorescence Resonance Energy Transfer MeSH
- Models, Theoretical MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
After DNA damage, the cell cycle is arrested to avoid propagation of mutations. Arrest in G2 phase is initiated by ATM-/ATR-dependent signaling that inhibits mitosis-promoting kinases such as Plk1. At the same time, Plk1 can counteract ATR-dependent signaling and is required for eventual resumption of the cell cycle. However, what determines when Plk1 activity can resume remains unclear. Here, we use FRET-based reporters to show that a global spread of ATM activity on chromatin and phosphorylation of ATM targets including KAP1 control Plk1 re-activation. These phosphorylations are rapidly counteracted by the chromatin-bound phosphatase Wip1, allowing cell cycle restart despite persistent ATM activity present at DNA lesions. Combining experimental data and mathematical modeling, we propose a model for how the minimal duration of cell cycle arrest is controlled. Our model shows how cell cycle restart can occur before completion of DNA repair and suggests a mechanism for checkpoint adaptation in human cells.
Department of Cell and Molecular Biology Karolinska Institutet Stockholm Sweden
Division of Cell Biology Netherlands Cancer Institute Amsterdam The Netherlands
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17030755
- 003
- CZ-PrNML
- 005
- 20171025115352.0
- 007
- ta
- 008
- 171025s2017 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.15252/embj.201696082 $2 doi
- 035 __
- $a (PubMed)28607002
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Jaiswal, Himjyot $u Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- 245 10
- $a ATM/Wip1 activities at chromatin control Plk1 re-activation to determine G2 checkpoint duration / $c H. Jaiswal, J. Benada, E. Müllers, K. Akopyan, K. Burdova, T. Koolmeister, T. Helleday, RH. Medema, L. Macurek, A. Lindqvist,
- 520 9_
- $a After DNA damage, the cell cycle is arrested to avoid propagation of mutations. Arrest in G2 phase is initiated by ATM-/ATR-dependent signaling that inhibits mitosis-promoting kinases such as Plk1. At the same time, Plk1 can counteract ATR-dependent signaling and is required for eventual resumption of the cell cycle. However, what determines when Plk1 activity can resume remains unclear. Here, we use FRET-based reporters to show that a global spread of ATM activity on chromatin and phosphorylation of ATM targets including KAP1 control Plk1 re-activation. These phosphorylations are rapidly counteracted by the chromatin-bound phosphatase Wip1, allowing cell cycle restart despite persistent ATM activity present at DNA lesions. Combining experimental data and mathematical modeling, we propose a model for how the minimal duration of cell cycle arrest is controlled. Our model shows how cell cycle restart can occur before completion of DNA repair and suggests a mechanism for checkpoint adaptation in human cells.
- 650 _2
- $a ATM protein $x metabolismus $7 D064007
- 650 _2
- $a proteiny buněčného cyklu $x metabolismus $7 D018797
- 650 _2
- $a buněčné linie $7 D002460
- 650 _2
- $a chromatin $x metabolismus $7 D002843
- 650 _2
- $a rezonanční přenos fluorescenční energie $7 D031541
- 650 12
- $a kontrolní body fáze G2 buněčného cyklu $7 D059565
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a biologické modely $7 D008954
- 650 _2
- $a teoretické modely $7 D008962
- 650 _2
- $a fosforylace $7 D010766
- 650 _2
- $a mapování interakce mezi proteiny $7 D025941
- 650 _2
- $a proteinfosfatasa 2C $x metabolismus $7 D000071636
- 650 _2
- $a posttranslační úpravy proteinů $7 D011499
- 650 _2
- $a protein-serin-threoninkinasy $x metabolismus $7 D017346
- 650 _2
- $a protoonkogenní proteiny $x metabolismus $7 D011518
- 650 _2
- $a represorové proteiny $x metabolismus $7 D012097
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Benada, Jan $u Laboratory of Cancer Cell Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic. Faculty of Science, Charles University in Prague, Prague, Czech Republic.
- 700 1_
- $a Müllers, Erik $u Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- 700 1_
- $a Akopyan, Karen $u Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden. $7 gn_A_00003024
- 700 1_
- $a Burdova, Kamila $u Laboratory of Cancer Cell Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
- 700 1_
- $a Koolmeister, Tobias $u Department of Medical Biochemistry and Biophysics, and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.
- 700 1_
- $a Helleday, Thomas $u Department of Medical Biochemistry and Biophysics, and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.
- 700 1_
- $a Medema, René H $u Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
- 700 1_
- $a Macurek, Libor $u Laboratory of Cancer Cell Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic libor.macurek@img.cas.cz arne.lindqvist@ki.se.
- 700 1_
- $a Lindqvist, Arne $u Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden libor.macurek@img.cas.cz arne.lindqvist@ki.se.
- 773 0_
- $w MED00181668 $t The EMBO journal $x 1460-2075 $g Roč. 36, č. 14 (2017), s. 2161-2176
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28607002 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20171025 $b ABA008
- 991 __
- $a 20171025115434 $b ABA008
- 999 __
- $a ok $b bmc $g 1254348 $s 991782
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 36 $c 14 $d 2161-2176 $e 20170612 $i 1460-2075 $m The EPMA journal $n EPMA J $x MED00181668
- LZP __
- $a Pubmed-20171025