• Je něco špatně v tomto záznamu ?

Rhodamine bound maghemite as a long-term dual imaging nanoprobe of adipose tissue-derived mesenchymal stromal cells

V. Cmiel, J. Skopalik, K. Polakova, J. Solar, M. Havrdova, D. Milde, I. Justan, M. Magro, Z. Starcuk, I. Provaznik,

. 2017 ; 46 (5) : 433-444. [pub] 20161126

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc17031267
E-zdroje Online Plný text

NLK ProQuest Central od 1997-01-01 do 2019-01-31
Medline Complete (EBSCOhost) od 1996-11-01 do Před 1 rokem
Health & Medicine (ProQuest) od 1997-01-01 do 2019-01-31

In the last few years, magnetically labeled cells have been intensively explored, and non-invasive cell tracking and magnetic manipulation methods have been tested in preclinical studies focused on cell transplantation. For clinical applications, it is desirable to know the intracellular pathway of nanoparticles, which can predict their biocompatibility with cells and the long-term imaging properties of labeled cells. Here, we quantified labeling efficiency, localization, and fluorescence properties of Rhodamine derivatized superparamagnetic maghemite nanoparticles (SAMN-R) in mesenchymal stromal cells (MSC). We investigated the stability of SAMN-R in the intracellular space during a long culture (20 days). Analyses were based on advanced confocal microscopy accompanied by atomic absorption spectroscopy (AAS) and magnetic resonance imaging. SAMN-R displayed excellent cellular uptake (24 h of labeling), and no toxicity of SAMN-R labeling was found. 83% of SAMN-R nanoparticles were localized in lysosomes, only 4.8% were found in mitochondria, and no particles were localized in the nucleus. On the basis of the MSC fluorescence measurement every 6 days, we also quantified the continual decrease of SAMN-R fluorescence in the average single MSC during 18 days. An additional set of analyses showed that the intracellular SAMN-R signal decrease was minimally caused by fluorophore degradation or nanoparticles extraction from the cells, main reason is a cell division. The fluorescence of SAMN-R nanoparticles within the cells was detectable minimally for 20 days. These observations indicate that SAMN-R nanoparticles have a potential for application in transplantation medicine.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17031267
003      
CZ-PrNML
005      
20171031101559.0
007      
ta
008      
171025s2017 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00249-016-1187-1 $2 doi
035    __
$a (PubMed)27889810
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Cmiel, Vratislav $u Department of Biomedical Engineering, FEEC, Brno University of Technology, Brno, Czech Republic.
245    10
$a Rhodamine bound maghemite as a long-term dual imaging nanoprobe of adipose tissue-derived mesenchymal stromal cells / $c V. Cmiel, J. Skopalik, K. Polakova, J. Solar, M. Havrdova, D. Milde, I. Justan, M. Magro, Z. Starcuk, I. Provaznik,
520    9_
$a In the last few years, magnetically labeled cells have been intensively explored, and non-invasive cell tracking and magnetic manipulation methods have been tested in preclinical studies focused on cell transplantation. For clinical applications, it is desirable to know the intracellular pathway of nanoparticles, which can predict their biocompatibility with cells and the long-term imaging properties of labeled cells. Here, we quantified labeling efficiency, localization, and fluorescence properties of Rhodamine derivatized superparamagnetic maghemite nanoparticles (SAMN-R) in mesenchymal stromal cells (MSC). We investigated the stability of SAMN-R in the intracellular space during a long culture (20 days). Analyses were based on advanced confocal microscopy accompanied by atomic absorption spectroscopy (AAS) and magnetic resonance imaging. SAMN-R displayed excellent cellular uptake (24 h of labeling), and no toxicity of SAMN-R labeling was found. 83% of SAMN-R nanoparticles were localized in lysosomes, only 4.8% were found in mitochondria, and no particles were localized in the nucleus. On the basis of the MSC fluorescence measurement every 6 days, we also quantified the continual decrease of SAMN-R fluorescence in the average single MSC during 18 days. An additional set of analyses showed that the intracellular SAMN-R signal decrease was minimally caused by fluorophore degradation or nanoparticles extraction from the cells, main reason is a cell division. The fluorescence of SAMN-R nanoparticles within the cells was detectable minimally for 20 days. These observations indicate that SAMN-R nanoparticles have a potential for application in transplantation medicine.
650    _2
$a tuková tkáň $x cytologie $7 D000273
650    _2
$a viabilita buněk $7 D002470
650    _2
$a dextrany $x metabolismus $7 D003911
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a intracelulární prostor $x metabolismus $7 D042541
650    _2
$a magnetické nanočástice $x chemie $7 D058185
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a mezenchymální kmenové buňky $x cytologie $x metabolismus $7 D059630
650    _2
$a molekulární zobrazování $x metody $7 D057054
650    _2
$a molekulární sondy $x chemie $x metabolismus $7 D015335
650    _2
$a rhodaminy $x chemie $7 D012235
650    _2
$a fluorescenční spektrometrie $7 D013050
655    _2
$a časopisecké články $7 D016428
700    1_
$a Skopalik, Josef $u Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic. j.skopalik@gmail.com.
700    1_
$a Polakova, Katerina $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Experimental Physics and Analytical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic. dr.kacka.polakova@gmail.com.
700    1_
$a Solar, Jan $u International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
700    1_
$a Havrdova, Marketa $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Experimental Physics and Analytical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic.
700    1_
$a Milde, David $u Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Experimental Physics and Analytical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic.
700    1_
$a Justan, Ivan $u Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic. International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
700    1_
$a Magro, Massimiliano $u Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy.
700    1_
$a Starcuk, Zenon $u Institute of Scientific Instruments, The Czech Academy of Sciences, Brno, Czech Republic.
700    1_
$a Provaznik, Ivo $u Department of Biomedical Engineering, FEEC, Brno University of Technology, Brno, Czech Republic.
773    0_
$w MED00001590 $t European biophysics journal EBJ $x 1432-1017 $g Roč. 46, č. 5 (2017), s. 433-444
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27889810 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20171025 $b ABA008
991    __
$a 20171031101649 $b ABA008
999    __
$a ok $b bmc $g 1254860 $s 992294
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 46 $c 5 $d 433-444 $e 20161126 $i 1432-1017 $m European biophysics journal $n Eur Biophys J $x MED00001590
LZP    __
$a Pubmed-20171025

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...