-
Je něco špatně v tomto záznamu ?
Manipulating Wnt signaling at different subcellular levels affects the fate of neonatal neural stem/progenitor cells
J. Kriska, P. Honsa, D. Dzamba, O. Butenko, D. Kolenicova, L. Janeckova, Z. Nahacka, L. Andera, Z. Kozmik, MM. Taketo, V. Korinek, M. Anderova,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články
- MeSH
- beta-katenin genetika metabolismus MeSH
- imunohistochemie MeSH
- kultivované buňky MeSH
- membránové potenciály fyziologie MeSH
- metoda terčíkového zámku MeSH
- mezibuněčné signální peptidy a proteiny genetika metabolismus MeSH
- mozek cytologie metabolismus MeSH
- myši transgenní MeSH
- nervové kmenové buňky cytologie metabolismus MeSH
- neurogeneze fyziologie MeSH
- neuroglie cytologie metabolismus MeSH
- neurony cytologie metabolismus MeSH
- signální dráha Wnt fyziologie MeSH
- transkripční faktory BHLH-Zip genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The canonical Wnt signaling pathway plays an important role in embryogenesis, and the establishment of neurogenic niches. It is involved in proliferation and differentiation of neural progenitors, since elevated Wnt/β-catenin signaling promotes differentiation of neural stem/progenitor cells (NS/PCs(1)) towards neuroblasts. Nevertheless, it remains elusive how the differentiation program of neural progenitors is influenced by the Wnt signaling output. Using transgenic mouse models, we found that in vitro activation of Wnt signaling resulted in higher expression of β-catenin protein and Wnt/β-catenin target genes, while Wnt signaling inhibition resulted in the reverse effect. Within differentiated cells, we identified three electrophysiologically and immunocytochemically distinct cell types, whose incidence was markedly affected by the Wnt signaling output. Activation of the pathway suppressed gliogenesis, and promoted differentiation of NS/PCs towards a neuronal phenotype, while its inhibition led to suppressed neurogenesis and increased counts of cells of glial phenotype. Moreover, Wnt signaling hyperactivation resulted in an increased incidence of cells expressing outwardly rectifying K(+) currents, together with inwardly rectifying Na(+) currents, a typical current pattern of immature neurons, while blocking the pathway led to the opposite effect. Taken together, our data indicate that the Wnt signaling pathway orchestrates neonatal NS/PCs differentiation towards cells with neuronal characteristics, which might be important for nervous tissue regeneration during central nervous system disorders. Furthermore, the transgenic mouse strains used in this study may serve as a convenient tool to manipulate β-catenin-dependent signaling in neural progenitors in the neonatal brain.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17031338
- 003
- CZ-PrNML
- 005
- 20171101100516.0
- 007
- ta
- 008
- 171025s2016 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.brainres.2016.09.026 $2 doi
- 035 __
- $a (PubMed)27659965
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Kriska, Jan $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic; 2(nd) Faculty of Medicine, Charles University in Prague, V Uvalu 84, 150 06 Prague 5, Czech Republic. Electronic address: kriska@biomed.cas.cz.
- 245 10
- $a Manipulating Wnt signaling at different subcellular levels affects the fate of neonatal neural stem/progenitor cells / $c J. Kriska, P. Honsa, D. Dzamba, O. Butenko, D. Kolenicova, L. Janeckova, Z. Nahacka, L. Andera, Z. Kozmik, MM. Taketo, V. Korinek, M. Anderova,
- 520 9_
- $a The canonical Wnt signaling pathway plays an important role in embryogenesis, and the establishment of neurogenic niches. It is involved in proliferation and differentiation of neural progenitors, since elevated Wnt/β-catenin signaling promotes differentiation of neural stem/progenitor cells (NS/PCs(1)) towards neuroblasts. Nevertheless, it remains elusive how the differentiation program of neural progenitors is influenced by the Wnt signaling output. Using transgenic mouse models, we found that in vitro activation of Wnt signaling resulted in higher expression of β-catenin protein and Wnt/β-catenin target genes, while Wnt signaling inhibition resulted in the reverse effect. Within differentiated cells, we identified three electrophysiologically and immunocytochemically distinct cell types, whose incidence was markedly affected by the Wnt signaling output. Activation of the pathway suppressed gliogenesis, and promoted differentiation of NS/PCs towards a neuronal phenotype, while its inhibition led to suppressed neurogenesis and increased counts of cells of glial phenotype. Moreover, Wnt signaling hyperactivation resulted in an increased incidence of cells expressing outwardly rectifying K(+) currents, together with inwardly rectifying Na(+) currents, a typical current pattern of immature neurons, while blocking the pathway led to the opposite effect. Taken together, our data indicate that the Wnt signaling pathway orchestrates neonatal NS/PCs differentiation towards cells with neuronal characteristics, which might be important for nervous tissue regeneration during central nervous system disorders. Furthermore, the transgenic mouse strains used in this study may serve as a convenient tool to manipulate β-catenin-dependent signaling in neural progenitors in the neonatal brain.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a transkripční faktory BHLH-Zip $x genetika $x metabolismus $7 D051778
- 650 _2
- $a mozek $x cytologie $x metabolismus $7 D001921
- 650 _2
- $a kultivované buňky $7 D002478
- 650 _2
- $a imunohistochemie $7 D007150
- 650 _2
- $a mezibuněčné signální peptidy a proteiny $x genetika $x metabolismus $7 D036341
- 650 _2
- $a membránové potenciály $x fyziologie $7 D008564
- 650 _2
- $a myši transgenní $7 D008822
- 650 _2
- $a nervové kmenové buňky $x cytologie $x metabolismus $7 D058953
- 650 _2
- $a neurogeneze $x fyziologie $7 D055495
- 650 _2
- $a neuroglie $x cytologie $x metabolismus $7 D009457
- 650 _2
- $a neurony $x cytologie $x metabolismus $7 D009474
- 650 _2
- $a metoda terčíkového zámku $7 D018408
- 650 _2
- $a signální dráha Wnt $x fyziologie $7 D060449
- 650 _2
- $a beta-katenin $x genetika $x metabolismus $7 D051176
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Honsa, Pavel $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. Electronic address: honsa@biomed.cas.cz.
- 700 1_
- $a Dzamba, David $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. Electronic address: david.dzamba@gmail.com.
- 700 1_
- $a Butenko, Olena $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. Electronic address: obutenko@unito.it.
- 700 1_
- $a Kolenicova, Denisa $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. Electronic address: denisa.kolenicova@biomed.cas.cz.
- 700 1_
- $a Janeckova, Lucie $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic; Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. Electronic address: lucie.janeckova@img.cas.cz.
- 700 1_
- $a Nahacka, Zuzana $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. Electronic address: zuzana.nahacka@img.cas.cz.
- 700 1_
- $a Andera, Ladislav $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. Electronic address: ladislav.andera@img.cas.cz. $7 gn_A_00006005
- 700 1_
- $a Kozmik, Zbynek $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. Electronic address: zbynek.kozmik@img.cas.cz.
- 700 1_
- $a Taketo, M Mark $u Department of Pharmacology, Graduate School of Medicine, Kyoto University, Yoshida Konoé-cho, Sakyo-ku, Kyoto 606-8501, Japan. Electronic address: taketo@mfour.med.kyoto-u.ac.jp.
- 700 1_
- $a Korinek, Vladimir $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic; Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. Electronic address: vladimir.korinek@img.cas.cz.
- 700 1_
- $a Anderova, Miroslava $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic; 2(nd) Faculty of Medicine, Charles University in Prague, V Uvalu 84, 150 06 Prague 5, Czech Republic. Electronic address: anderova@biomed.cas.cz. $7 gn_A_00006037
- 773 0_
- $w MED00000841 $t Brain research $x 1872-6240 $g Roč. 1651, č. - (2016), s. 73-87
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27659965 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20171025 $b ABA008
- 991 __
- $a 20171101100607 $b ABA008
- 999 __
- $a ok $b bmc $g 1254931 $s 992365
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 1651 $c - $d 73-87 $e 20160919 $i 1872-6240 $m Brain research $n Brain Res $x MED00000841
- LZP __
- $a Pubmed-20171025