• Je něco špatně v tomto záznamu ?

Manipulating Wnt signaling at different subcellular levels affects the fate of neonatal neural stem/progenitor cells

J. Kriska, P. Honsa, D. Dzamba, O. Butenko, D. Kolenicova, L. Janeckova, Z. Nahacka, L. Andera, Z. Kozmik, MM. Taketo, V. Korinek, M. Anderova,

. 2016 ; 1651 (-) : 73-87. [pub] 20160919

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc17031338

The canonical Wnt signaling pathway plays an important role in embryogenesis, and the establishment of neurogenic niches. It is involved in proliferation and differentiation of neural progenitors, since elevated Wnt/β-catenin signaling promotes differentiation of neural stem/progenitor cells (NS/PCs(1)) towards neuroblasts. Nevertheless, it remains elusive how the differentiation program of neural progenitors is influenced by the Wnt signaling output. Using transgenic mouse models, we found that in vitro activation of Wnt signaling resulted in higher expression of β-catenin protein and Wnt/β-catenin target genes, while Wnt signaling inhibition resulted in the reverse effect. Within differentiated cells, we identified three electrophysiologically and immunocytochemically distinct cell types, whose incidence was markedly affected by the Wnt signaling output. Activation of the pathway suppressed gliogenesis, and promoted differentiation of NS/PCs towards a neuronal phenotype, while its inhibition led to suppressed neurogenesis and increased counts of cells of glial phenotype. Moreover, Wnt signaling hyperactivation resulted in an increased incidence of cells expressing outwardly rectifying K(+) currents, together with inwardly rectifying Na(+) currents, a typical current pattern of immature neurons, while blocking the pathway led to the opposite effect. Taken together, our data indicate that the Wnt signaling pathway orchestrates neonatal NS/PCs differentiation towards cells with neuronal characteristics, which might be important for nervous tissue regeneration during central nervous system disorders. Furthermore, the transgenic mouse strains used in this study may serve as a convenient tool to manipulate β-catenin-dependent signaling in neural progenitors in the neonatal brain.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17031338
003      
CZ-PrNML
005      
20171101100516.0
007      
ta
008      
171025s2016 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.brainres.2016.09.026 $2 doi
035    __
$a (PubMed)27659965
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Kriska, Jan $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic; 2(nd) Faculty of Medicine, Charles University in Prague, V Uvalu 84, 150 06 Prague 5, Czech Republic. Electronic address: kriska@biomed.cas.cz.
245    10
$a Manipulating Wnt signaling at different subcellular levels affects the fate of neonatal neural stem/progenitor cells / $c J. Kriska, P. Honsa, D. Dzamba, O. Butenko, D. Kolenicova, L. Janeckova, Z. Nahacka, L. Andera, Z. Kozmik, MM. Taketo, V. Korinek, M. Anderova,
520    9_
$a The canonical Wnt signaling pathway plays an important role in embryogenesis, and the establishment of neurogenic niches. It is involved in proliferation and differentiation of neural progenitors, since elevated Wnt/β-catenin signaling promotes differentiation of neural stem/progenitor cells (NS/PCs(1)) towards neuroblasts. Nevertheless, it remains elusive how the differentiation program of neural progenitors is influenced by the Wnt signaling output. Using transgenic mouse models, we found that in vitro activation of Wnt signaling resulted in higher expression of β-catenin protein and Wnt/β-catenin target genes, while Wnt signaling inhibition resulted in the reverse effect. Within differentiated cells, we identified three electrophysiologically and immunocytochemically distinct cell types, whose incidence was markedly affected by the Wnt signaling output. Activation of the pathway suppressed gliogenesis, and promoted differentiation of NS/PCs towards a neuronal phenotype, while its inhibition led to suppressed neurogenesis and increased counts of cells of glial phenotype. Moreover, Wnt signaling hyperactivation resulted in an increased incidence of cells expressing outwardly rectifying K(+) currents, together with inwardly rectifying Na(+) currents, a typical current pattern of immature neurons, while blocking the pathway led to the opposite effect. Taken together, our data indicate that the Wnt signaling pathway orchestrates neonatal NS/PCs differentiation towards cells with neuronal characteristics, which might be important for nervous tissue regeneration during central nervous system disorders. Furthermore, the transgenic mouse strains used in this study may serve as a convenient tool to manipulate β-catenin-dependent signaling in neural progenitors in the neonatal brain.
650    _2
$a zvířata $7 D000818
650    _2
$a transkripční faktory BHLH-Zip $x genetika $x metabolismus $7 D051778
650    _2
$a mozek $x cytologie $x metabolismus $7 D001921
650    _2
$a kultivované buňky $7 D002478
650    _2
$a imunohistochemie $7 D007150
650    _2
$a mezibuněčné signální peptidy a proteiny $x genetika $x metabolismus $7 D036341
650    _2
$a membránové potenciály $x fyziologie $7 D008564
650    _2
$a myši transgenní $7 D008822
650    _2
$a nervové kmenové buňky $x cytologie $x metabolismus $7 D058953
650    _2
$a neurogeneze $x fyziologie $7 D055495
650    _2
$a neuroglie $x cytologie $x metabolismus $7 D009457
650    _2
$a neurony $x cytologie $x metabolismus $7 D009474
650    _2
$a metoda terčíkového zámku $7 D018408
650    _2
$a signální dráha Wnt $x fyziologie $7 D060449
650    _2
$a beta-katenin $x genetika $x metabolismus $7 D051176
655    _2
$a časopisecké články $7 D016428
700    1_
$a Honsa, Pavel $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. Electronic address: honsa@biomed.cas.cz.
700    1_
$a Dzamba, David $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. Electronic address: david.dzamba@gmail.com.
700    1_
$a Butenko, Olena $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. Electronic address: obutenko@unito.it.
700    1_
$a Kolenicova, Denisa $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. Electronic address: denisa.kolenicova@biomed.cas.cz.
700    1_
$a Janeckova, Lucie $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic; Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. Electronic address: lucie.janeckova@img.cas.cz.
700    1_
$a Nahacka, Zuzana $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. Electronic address: zuzana.nahacka@img.cas.cz.
700    1_
$a Andera, Ladislav $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. Electronic address: ladislav.andera@img.cas.cz. $7 gn_A_00006005
700    1_
$a Kozmik, Zbynek $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. Electronic address: zbynek.kozmik@img.cas.cz.
700    1_
$a Taketo, M Mark $u Department of Pharmacology, Graduate School of Medicine, Kyoto University, Yoshida Konoé-cho, Sakyo-ku, Kyoto 606-8501, Japan. Electronic address: taketo@mfour.med.kyoto-u.ac.jp.
700    1_
$a Korinek, Vladimir $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic; Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. Electronic address: vladimir.korinek@img.cas.cz.
700    1_
$a Anderova, Miroslava $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic; 2(nd) Faculty of Medicine, Charles University in Prague, V Uvalu 84, 150 06 Prague 5, Czech Republic. Electronic address: anderova@biomed.cas.cz. $7 gn_A_00006037
773    0_
$w MED00000841 $t Brain research $x 1872-6240 $g Roč. 1651, č. - (2016), s. 73-87
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27659965 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20171025 $b ABA008
991    __
$a 20171101100607 $b ABA008
999    __
$a ok $b bmc $g 1254931 $s 992365
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 1651 $c - $d 73-87 $e 20160919 $i 1872-6240 $m Brain research $n Brain Res $x MED00000841
LZP    __
$a Pubmed-20171025

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...