• Je něco špatně v tomto záznamu ?

Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes

L. Novák, Z. Zubáčová, A. Karnkowska, M. Kolisko, M. Hroudová, CW. Stairs, AG. Simpson, PJ. Keeling, AJ. Roger, I. Čepička, V. Hampl,

. 2016 ; 16 (1) : 197. [pub] 20161006

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc17031403

BACKGROUND: Multiple prokaryotic lineages use the arginine deiminase (ADI) pathway for anaerobic energy production by arginine degradation. The distribution of this pathway among eukaryotes has been thought to be very limited, with only two specialized groups living in low oxygen environments (Parabasalia and Diplomonadida) known to possess the complete set of all three enzymes. We have performed an extensive survey of available sequence data in order to map the distribution of these enzymes among eukaryotes and to reconstruct their phylogenies. RESULTS: We have found genes for the complete pathway in almost all examined representatives of Metamonada, the anaerobic protist group that includes parabasalids and diplomonads. Phylogenetic analyses indicate the presence of the complete pathway in the last common ancestor of metamonads and heterologous transformation experiments suggest its cytosolic localization in the metamonad ancestor. Outside Metamonada, the complete pathway occurs rarely, nevertheless, it was found in representatives of most major eukaryotic clades. CONCLUSIONS: Phylogenetic relationships of complete pathways are consistent with the presence of the Archaea-derived ADI pathway in the last common ancestor of all eukaryotes, although other evolutionary scenarios remain possible. The presence of the incomplete set of enzymes is relatively common among eukaryotes and it may be related to the fact that these enzymes are involved in other cellular processes, such as the ornithine-urea cycle. Single protein phylogenies suggest that the evolutionary history of all three enzymes has been shaped by frequent gene losses and horizontal transfers, which may sometimes be connected with their diverse roles in cellular metabolism.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17031403
003      
CZ-PrNML
005      
20171025115511.0
007      
ta
008      
171025s2016 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12862-016-0771-4 $2 doi
035    __
$a (PubMed)27716026
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Novák, Lukáš $u Department of Parasitology, Charles University, Faculty of Science, Prague, Czech Republic.
245    10
$a Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes / $c L. Novák, Z. Zubáčová, A. Karnkowska, M. Kolisko, M. Hroudová, CW. Stairs, AG. Simpson, PJ. Keeling, AJ. Roger, I. Čepička, V. Hampl,
520    9_
$a BACKGROUND: Multiple prokaryotic lineages use the arginine deiminase (ADI) pathway for anaerobic energy production by arginine degradation. The distribution of this pathway among eukaryotes has been thought to be very limited, with only two specialized groups living in low oxygen environments (Parabasalia and Diplomonadida) known to possess the complete set of all three enzymes. We have performed an extensive survey of available sequence data in order to map the distribution of these enzymes among eukaryotes and to reconstruct their phylogenies. RESULTS: We have found genes for the complete pathway in almost all examined representatives of Metamonada, the anaerobic protist group that includes parabasalids and diplomonads. Phylogenetic analyses indicate the presence of the complete pathway in the last common ancestor of metamonads and heterologous transformation experiments suggest its cytosolic localization in the metamonad ancestor. Outside Metamonada, the complete pathway occurs rarely, nevertheless, it was found in representatives of most major eukaryotic clades. CONCLUSIONS: Phylogenetic relationships of complete pathways are consistent with the presence of the Archaea-derived ADI pathway in the last common ancestor of all eukaryotes, although other evolutionary scenarios remain possible. The presence of the incomplete set of enzymes is relatively common among eukaryotes and it may be related to the fact that these enzymes are involved in other cellular processes, such as the ornithine-urea cycle. Single protein phylogenies suggest that the evolutionary history of all three enzymes has been shaped by frequent gene losses and horizontal transfers, which may sometimes be connected with their diverse roles in cellular metabolism.
650    _2
$a Archaea $x metabolismus $7 D001105
650    _2
$a arginin $x metabolismus $7 D001120
650    _2
$a Diplomonadida $x enzymologie $7 D016828
650    _2
$a Eukaryota $x klasifikace $x genetika $x metabolismus $7 D056890
650    12
$a molekulární evoluce $7 D019143
650    _2
$a hydrolasy $x metabolismus $7 D006867
650    12
$a metabolické sítě a dráhy $7 D053858
650    _2
$a fylogeneze $7 D010802
655    _2
$a časopisecké články $7 D016428
700    1_
$a Zubáčová, Zuzana $u Department of Parasitology, Charles University, Faculty of Science, Prague, Czech Republic.
700    1_
$a Karnkowska, Anna $u Department of Parasitology, Charles University, Faculty of Science, Prague, Czech Republic. Department of Botany, University of British Columbia, Vancouver, Canada.
700    1_
$a Kolisko, Martin $u Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada. Department of Botany, University of British Columbia, Vancouver, Canada.
700    1_
$a Hroudová, Miluše $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
700    1_
$a Stairs, Courtney W $u Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.
700    1_
$a Simpson, Alastair G B $u Department of Biology, Dalhousie University, Halifax, Canada.
700    1_
$a Keeling, Patrick J $u Department of Botany, University of British Columbia, Vancouver, Canada.
700    1_
$a Roger, Andrew J $u Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.
700    1_
$a Čepička, Ivan $u Department of Zoology, Charles University, Faculty of Science, Prague, Czech Republic.
700    1_
$a Hampl, Vladimír $u Department of Parasitology, Charles University, Faculty of Science, Prague, Czech Republic. vlada@natur.cuni.cz.
773    0_
$w MED00006797 $t BMC evolutionary biology $x 1471-2148 $g Roč. 16, č. 1 (2016), s. 197
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27716026 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20171025 $b ABA008
991    __
$a 20171025115554 $b ABA008
999    __
$a ok $b bmc $g 1254996 $s 992430
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 16 $c 1 $d 197 $e 20161006 $i 1471-2148 $m BMC evolutionary biology $n BMC Evol Biol $x MED00006797
LZP    __
$a Pubmed-20171025

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...