-
Something wrong with this record ?
The 9aaTAD Transactivation Domains: From Gal4 to p53
M. Piskacek, M. Havelka, M. Rezacova, A. Knight,
Language English Country United States
Document type Journal Article
Grant support
NV15-32935A
MZ0
CEP Register
Digital library NLK
Full text - Article
Source
NLK
Directory of Open Access Journals
from 2006
Free Medical Journals
from 2006
Public Library of Science (PLoS)
from 2006
PubMed Central
from 2006
Europe PubMed Central
from 2006
ProQuest Central
from 2006-12-01
Open Access Digital Library
from 2006-01-01
Open Access Digital Library
from 2006-01-01
Open Access Digital Library
from 2006-10-01
Medline Complete (EBSCOhost)
from 2008-01-01
Nursing & Allied Health Database (ProQuest)
from 2006-12-01
Health & Medicine (ProQuest)
from 2006-12-01
Public Health Database (ProQuest)
from 2006-12-01
ROAD: Directory of Open Access Scholarly Resources
from 2006
- MeSH
- Transcriptional Activation * MeSH
- DNA-Binding Proteins chemistry MeSH
- Tumor Suppressor Protein p53 genetics MeSH
- Saccharomyces cerevisiae Proteins chemistry MeSH
- Saccharomyces cerevisiae genetics MeSH
- Amino Acid Sequence MeSH
- Sequence Homology, Amino Acid MeSH
- Transcription Factors chemistry MeSH
- Publication type
- Journal Article MeSH
The family of the Nine amino acid Transactivation Domain, 9aaTAD family, comprises currently over 40 members. The 9aaTAD domains are universally recognized by the transcriptional machinery from yeast to man. We had identified the 9aaTAD domains in the p53, Msn2, Pdr1 and B42 activators by our prediction algorithm. In this study, their competence to activate transcription as small peptides was proven. Not surprisingly, we elicited immense 9aaTAD divergence in hundreds of identified orthologs and numerous examples of the 9aaTAD species' convergence. We found unforeseen similarity of the mammalian p53 with yeast Gal4 9aaTAD domains. Furthermore, we identified artificial 9aaTAD domains generated accidentally by others. From an evolutionary perspective, the observed easiness to generate 9aaTAD transactivation domains indicates the natural advantage for spontaneous generation of transcription factors from DNA binding precursors.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17031437
- 003
- CZ-PrNML
- 005
- 20201111091032.0
- 007
- ta
- 008
- 171025s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pone.0162842 $2 doi
- 035 __
- $a (PubMed)27618436
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Piskacek, Martin $u Laboratory of Cancer Biology and Genetics, Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00, Brno, Czech Republic.
- 245 14
- $a The 9aaTAD Transactivation Domains: From Gal4 to p53 / $c M. Piskacek, M. Havelka, M. Rezacova, A. Knight,
- 520 9_
- $a The family of the Nine amino acid Transactivation Domain, 9aaTAD family, comprises currently over 40 members. The 9aaTAD domains are universally recognized by the transcriptional machinery from yeast to man. We had identified the 9aaTAD domains in the p53, Msn2, Pdr1 and B42 activators by our prediction algorithm. In this study, their competence to activate transcription as small peptides was proven. Not surprisingly, we elicited immense 9aaTAD divergence in hundreds of identified orthologs and numerous examples of the 9aaTAD species' convergence. We found unforeseen similarity of the mammalian p53 with yeast Gal4 9aaTAD domains. Furthermore, we identified artificial 9aaTAD domains generated accidentally by others. From an evolutionary perspective, the observed easiness to generate 9aaTAD transactivation domains indicates the natural advantage for spontaneous generation of transcription factors from DNA binding precursors.
- 650 _2
- $a sekvence aminokyselin $7 D000595
- 650 _2
- $a DNA vazebné proteiny $x chemie $7 D004268
- 650 _2
- $a Saccharomyces cerevisiae $x genetika $7 D012441
- 650 _2
- $a Saccharomyces cerevisiae - proteiny $x chemie $7 D029701
- 650 _2
- $a sekvenční homologie aminokyselin $7 D017386
- 650 _2
- $a transkripční faktory $x chemie $7 D014157
- 650 12
- $a aktivace transkripce $7 D015533
- 650 _2
- $a nádorový supresorový protein p53 $x genetika $7 D016159
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Havelka, Marek $u Laboratory of Cancer Biology and Genetics, Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00, Brno, Czech Republic.
- 700 1_
- $a Rezacova, Martina $u Laboratory of Cancer Biology and Genetics, Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00, Brno, Czech Republic.
- 700 1_
- $a Knight, Andrea $u Gamma Delta T Cell Laboratory, Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00, Brno, Czech Republic.
- 773 0_
- $w MED00180950 $t PloS one $x 1932-6203 $g Roč. 11, č. 9 (2016), s. e0162842
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27618436 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20171025 $b ABA008
- 991 __
- $a 20201111091029 $b ABA008
- 999 __
- $a ok $b bmc $g 1255030 $s 992464
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 11 $c 9 $d e0162842 $e 20160912 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
- GRA __
- $a NV15-32935A $p MZ0
- LZP __
- $a Pubmed-20171025